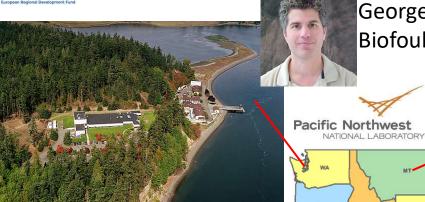


OPIN Workshop
Advanced Materials and Manufacturing
(Composite focus)
12/11/19, Nantes

Bernadette A. Hernandez- Sanchez

Principal Member of Technical Staff/Sandia National Laboratories

Evaluation of Composite Materials for Marine Renewable Energy Technologies


SAND2019-13723 PE

Sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy (US DOE-EERE) Water Power Technologies Office Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Materials Team

George Bonheyo: Biofouling

David Miller:

FLORIDA ATLANTI UNIVERSITY

Composite Performance

Marine Science Laboratory



Scott Hughes: Substructure Testing

Bernadette A. Hernandez-Sanchez: (PI)

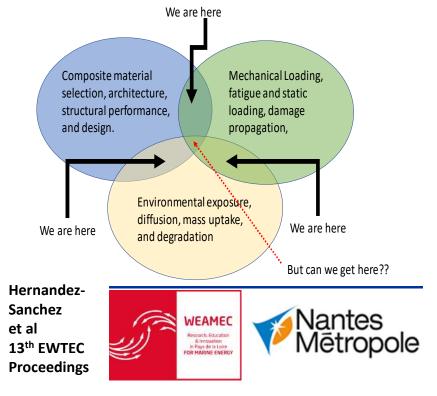
Materials Chemistry

Budi Gunawan: Loads & FBG Sensors


Vantes Vētropole

Materials Challenges for Marine Renewables

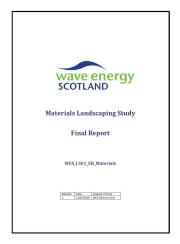
Proper structural/component materials and coatings are critical to reducing engineering barriers, COE, and commercialization time.



Significant Periodic Loading:

- Interaction with PTO & Control System
- Site Conditions
- IEC Design Standard (Fatigue/Ultimate)

Composites Research Needed


Materials Can Impact Cost and...

- Structure
- Designs and manufacture
- Accelerate manufacturing or Advanced manufacturing strategies
- Testing of novel materials or materials from marine industries to reduce risk
- Open water testing on materials for validation
- Reliability & Survivability
- Operation & Maintenance
- Certification & Safety

MHK Designs Exploring Composite Materials

AquaHarmonics

Columbia Power Technologies

Lockheed Martin-OTEC
Cold Water Pipe

Ocean Renewable Power Company

Resolute Marine Energy

WEAMEC
Research, Education
& Irrosoltion
In Pays de la Loire
FOR MARINE EMERGY

US MHK Composites Program

Industry directed full scale

subcomponent testing

(Artificial & Actual Seawater)

(5) 8x1 in

(5) 10x1 in

Salt Water Effects on

Composite Performance

Testing (coupons)

Metal – Carbon Fiber Composite Interconnects in Seawater

3 x3 in

Coupons provided by:

Composites Engineering Research Lab

Composites Technology Development

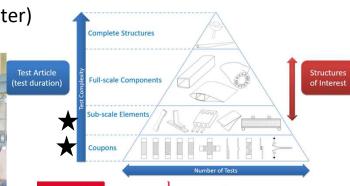
Hygrateck

Janicki

Industries

Polyone

Ocean Renewable Power

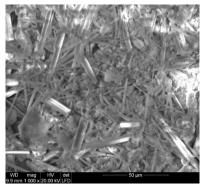

Company Verdant

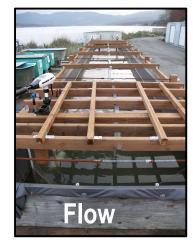
Biofouling & Environmental Effects on Composites

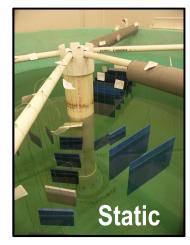
Industry directed sub scale elements & joined coupon fabrication/testing (Artificial & Actual Seawater)

For 1 data point:

- (3) 8x8 in panels
- (3) 3x3 in
- (3) 4x4 in
- (3) 1x1 in

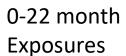



Environmental Effects on Composites



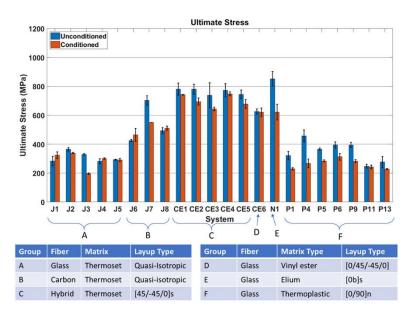
Corrosion can occur on metals connected to carbon fiber composite materials (i.e., CF composite to metal interconnects).

Biofouling Studies on Composites & Coatings


Calcareous deposit from corrosion study
CF/VE8084 + anode



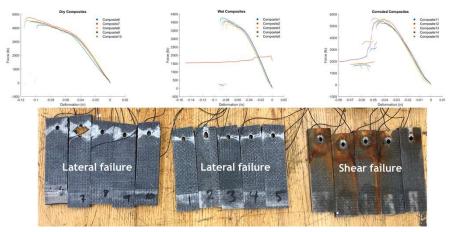
MRE relevant Velocities 0.1 m/S and 2.6 m/s


Building Block Approach to Structural Validation

Coupon Performance

MSU Material	Layup	Average V _F for static tests %	% Moisture	Longitudinal Direction			Transverse Direction		
				E, GPa	UTS, MPa	% strain	E, GPa	UTS, MPa	% strain
CE1	[V/(+/-45)g/0c] _s	40.9	0	56.1	786	1.38	10.7	98.3	3.17
CEI			1.2	58.3	787	1.33	8.54	68.3	1.84
CE2		35.8	0	54.8	773	1.40	9.02	83.3	3.26
CEZ			1.33	55.3	725	1.30	7.79	58.9	1.84
CE3		40.7	0	54.1	792	1.43	9.96	95.3	3.67
CES			1.1	52.1	691	1.31	8.62	68	1.92
CE4		36.1	0	53.7	774	1.36	8.91	83.9	3.69
CE4			1.2	53.1	712	1.30	8.18	60.5	1.82
CE5		36.4	0	56.5	733	1.29	9.69	77.8	3.54
CLS			0.34	57.9	695	1.15	8.05	63.6	2.05
CE6	[V/0/45/-45/0/V]	42.3	0	29.2	695	2.69	12.0	109	2.52
			0.36	28.7	590	2.36	16.6	126	2.36

Hybrid carbon & glass thermoset: moisture diffusion affects mechanical behavior



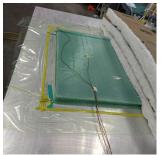
Corrosion Studies on Connections

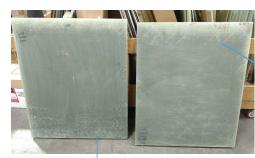
Joined Material Load Behavior

Unconditioned

Artificial Salt Water

Actual Seawater & Corrosion



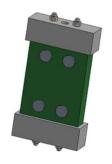

Degradation in strength & increase in failure strain


Building Block Approach to Structural Validation

Subcomponent Fabrication

609 mm x 730 mm x 43 mm 85 lbs

Adhesively shear specimens


Adhesive bondline

Compression Relaxation specimens

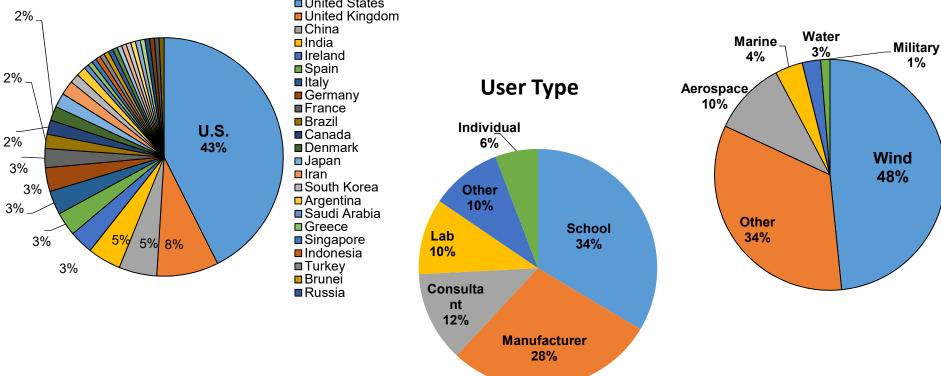
T-bolt connections


MHK Databases

Wind & Water Materials and Structures

http://energy.sandia.gov/energy/renewableenergy/water-power/technologydevelopment/advanced-materials/mhk-materialsdatabase/

https://tethys.pnnl.gov/



U.S. DOE MHK Composite Materials & Structures Database:

Benefits: Open Source, Industry Advised, Backed with Publications.

Country Institution United States

Future

"Provide a better understanding of the materials science and engineering of composites to avoid costly redesigns."

- Material Studies:
 - Explore Mid to Long Term Needs
 - Advanced Manufacturing
 - Structural Health
- Collaborations: Yes!
 - Deployment Sites
 - Validation
 - Standards

2016 Marine Energy Technology Symposium

Q&LA

Interreg LUROPEAN UNION North-West Europe OPIN

European Regional Development Fund

Thank you!