

Prof. Christophe BINETRUY

Institute of Civil Engineering & Mechanics / Centrale Nantes

Latest news from the academic research

OUTLINE

- Institute of Civil Engineering & Mechanics (GeM) at a glance
- Overview of recent research topics addressed in composite processing
- Examples

Research scope @ GeM

Research scope @ GeM

Overview of recent Composite Manufacturing Research Topics

Compaction of dry fabrics : mesoscale modelling

TIGHT STITCH - dry compacted state (60mbar, raw data)

LOOSE STITCH - dry compacted state (60mbar, raw data)

$$\sigma_i = \frac{1}{J} \lambda_i \frac{\partial W}{\partial \lambda_i}$$

$$\sigma_y = \frac{\mu_{OH}}{\alpha} \frac{1}{\lambda_z} \left[\lambda_y^{\alpha-1} - \lambda_z^{-\alpha\beta} \lambda_y^{-\alpha\beta-1} \right]$$

$$\sigma_{\mathbf{z}} = \frac{\mu_{OH}}{\alpha} \frac{1}{\lambda_{\mathbf{z}}} \left[\lambda_{\mathbf{z}}^{\alpha-1} - \lambda_{\mathbf{y}}^{-\alpha\beta} \lambda_{\mathbf{z}}^{-\alpha\beta-1} \right]$$

Forming of discontinuous TP composite layups

2D ply stack before Final formed component after QSP

Forming of discontinuous TP composite layups

Mulye P.D. et al, Numerical modeling of interply adhesion in composite forming of viscous discontinuous thermoplastic prepregs, submitted

SMC Compression

Charge lay-up

Forming

Flow and curing

Initial microstructure

Final microstructure after SMC compression

30 mm

Oter, L. et al. A step towards the numerical simulation of SMC compression moulding. In *AIP Conference Proceedings* (Vol. 1769, No. 1, p. 170026). AIP Publishing.

SMC Compression

Flow of fiber suspensions

- · Injection (reinforced thermoplastics, BMC,...)
- · Compression molding (Sheet Molding Compounds)

Theory of fiber suspensions [2, 3] Shape parameter

$$\frac{d}{dt}A_2 = WA_2 - A_2W - \Lambda\left(DA_2 + A_2D - D: A_4\right)$$
Rotation due to the vorticity Alignment with the shear flow

Distribution of orientation

Orientation tensor A_2

Classic assumptions:

- Undisturbed flow
- Moving solid particles

Liquid Resin Infusion

Micro-CT: In-situ experiment

Hemmer, J., Burtin, C., Comas-Cardona, S., Binetruy, C., Savart, T., & Babeau, A. (2018). Unloading during the infusion process: Direct measurement of the dual-scale fibrous microstructure evolution with X-ray computed tomography. Composites Part A, 115, 147-156.

Tape creels

Wet TP pultrusion

Cooled die

Heated die

Compaction and Impregnation increase

Product scale

Wet TP pultrusion

$$\nabla . u = -q(P, S)$$

$$q = \epsilon_{micro} (1 - \epsilon_{macro}) U \frac{dS}{dx}$$

$$\frac{dS}{dx} = \frac{1}{U} \frac{aP}{\beta \eta} \left(e^{(b(1-S)^c} - 1 \right)$$

$$\langle u \rangle - \epsilon_{macro} U = -\frac{K}{\eta} \nabla P$$

$$\rho c U \frac{\partial T(x,z)}{\partial x} = \frac{\partial}{\partial z} (k \frac{\partial T(x,z)}{\partial z})$$

$$\eta(T) = a \exp(-\frac{T}{b})$$

Fiber washing

Compression system

Fiber washing

Coupled axial porous flow and transverse squeeze flow

Hautefeuille, A., Comas-Cardona, S., & Binetruy, C. (2019). Mechanical signature and full-field measurement of flow-induced large inplane deformation of fibrous reinforcements in composite processing. Composites Part A, 118, 213-222.

OPIN

19™ EUROPEAN CONFERENCE ON COMPOSITE MATERIALS

SAVE THE DATE

LA CITÉ DES CONGRÈS DE NANTES

WWW.ECCM19.ORG

Q&A

Prof. Christophe BINETRUY

Institute of Civil Engineering & Mechanics / Centrale Nantes

christophe.Binetruy@ec-nantes.fr

Interreg LUROPEAN UNION North-West Europe OPIN

European Regional Development Fund

Thank you!