Basic Information	Results	Conclusion & Outlook	References	Appendix

Modelling Floating Wind Turbines in an Atmospheric Boundary Layer

Benyamin Schliffke

October 28, 2019

Basic Information	Results 0000000	Conclusion & Outlook	References	Appendix 000

Schedule

- Basic Information
 Floateole Project
 - The Motion System

2 Results

- The Boundary Layer
- First Results
- 3 Conclusion & Outlook

4 Appendix

Basic Information	Results	Conclusion & Outlook	References	Appendix
00000				

Basic Information

Basic Information	Results 0000000	Conclusion & Outlook	References	Appendix 000
Floateole Pro	iect			

Figure: FLOATGEN, the prototype floating offshore wind turbine, used as a reference in this thesis. Source: https://sem-rev.ec-nantes.fr/eolienneflottante-floatgen/ (visited on 18/02/2019 at 17:19)

- Hub height: 60 m
- Diameter: 80 m
- Floater: $36 m \times 36 m \times 10 m$

- Duration Floateole project: 2017-2021
- Work includes wind tunnel experiments (PhD) and field measurements (LIDAR, Post-Doc)
- Comparison of measurements, when both data sets are available

Basic Information	Results	Conclusion & Outlook	References	Appendix
00000				

The Atmospheric Boundary Layer

Figure: Modified from Harms (2010)

Basic Information	Results	Conclusion & Outlook	References	Appendix
00000				

Main Questions

- How do we accurately reproduce the floaters motion in the wind tunnel?
- Can the floaters frequencies be found in the behaviour of the wake?
- What is the effect of the motion on the wake development?

Basic Information	Results	Conclusion & Outlook	References	Appendix
00000				

Answers?

- ...model the motion of the floater.
- ...develop a motion system for the model turbine.
- ...develop a maritime boundary layer in the wind tunnel.
- …conduct experiments with idealised motions first, becoming more realistic.
- ...study the wake of the moving turbine model.

Basic Information	Results	Conclusion & Outlook	References	Appendix
00000				
The Motion System				
Reducing the Sc	ale			

geometric scale: 1:500

■ time scale: 200

	Full scale	Wind tunnel	Name
Nacelle height	60 <i>m</i>	12 cm	h
Rotor diameter	80 <i>m</i>	16 <i>cm</i>	D
Char. distance	10 <i>m</i>	2 cm	L
Char. frequency	0.01 <i>Hz</i>	2 Hz	f _{char}

Basic Information	Results	Conclusion & Outlook	References	Appendix
	000000			

Results

Basic Information	Results	Conclusion & Outlook	References	Appendix
	000000			
The Boundary Layer				
	o			

Boundary Layer Generation

Basic Information	Results	Conclusion & Outlook	References	Appendix
	000000			
The Boundary Layer				

Modelled Boundary Layer

Basic Information	Results	Conclusion & Outlook	References	Appendix
	000000			
First Results				

Velocity Profile

Basic Information	Results	Conclusion & Outlook	References	Appendix
	0000000			
First Results				

Velocity Profile - Motion

Basic Information	Results	Conclusion & Outlook	References	Appendix
	0000000			
First Results				

Turbulence Intensity

Basic Information	Results	Conclusion & Outlook	References	Appendix
	000000			
First Results				

Turbulence Intensity - Motion

Basic Information	Results	Conclusion & Outlook	References	Appendix
		000		

Conclusion & Outlook

Basic Information	Results	Conclusion & Outlook	References	Appendix
		000		

Conclusion

Conclusion: Introducing idealised surge motion appears to ...

- hardly decrease the velocity loss in the wake.
- slightly reduce the turbulence intensity.

Basic Information	Results	Conclusion & Outlook	References	Appendix
		000		

Outlook

- How do these profiles compare to an analytical model for fixed turbines (eg. Bastankhah and Porté-Agel (2014)?
- Can the spectral content of the flow confirm the findings?
- How does the motion affect the lateral behaviour?
- What are the spatial characteristics of the wake (lateral and vertical)?
- What characteristics change when complex motion is introduced?

Basic Information	Results 0000000	Conclusion & Outlook	References	Appendix 000

References

- Bastankhah, M. and Porté-Agel, F. (2014). A new analytical model for wind-turbine wakes. *Renewable Energy*, 70:116–123.
- Harms, F. (2010). Systematische Windkanaluntersuchungen zur Charakterisierung instationärer Ausbreitungsprozesse einzelner Gaswolken in urbanen Rauigkeitsstrukturen. PhD thesis, Meteorologisches Institut Universität Hamburg.

Basic Information	Results	Conclusion & Outlook	References	Appendix
				000

Appendix

Figure: Test set-up to be used for lateral measurements.

Basic Information	Results 0000000	Conclusion & Outlook	References	Appendix 00●

Table: Excerpt from VDI Guideline 3783. z_0 is the roughness length, α the exponent coefficient and d_0 the zero plane displacement. Added values for the modelled boundary layer.

Roughness class	slightly rough	modelled
Type of terrain	ice, snow, water surface	offshore
z ₀ [<i>m</i>]	10^{-5} to $5 \cdot 10^{-3}$	$5.5 imes 10^{-6}$
α	0.08 to 0.12	0.11
d ₀ [m]	≈ 0	0