Imagerie par gradient de défauts abrupts dans les barres enfouies

Matthieu GALLEZOT, Fabien TREYSSÈDE, Laurent LAGUERRE

IFSTTAR, GERS/GeoEND, 44344 Bouguenais, France

29 Juin 2018, journée thématique du GdR MecaWave, Paris

Sommaire

Contexte

Imagerie topologique d'un guide ouvert

3 Résultats

Perspectives et discussions

Contexte

Contrôle Non Destructif (CND) par ondes guidées dans le génie civil : structures élancées, partiellement ou totalement enfouies (*guide ouvert* : direction transverse non bornée)

Câble de précontrainte

Tirant d'ancrage

Actuellement :

- Inspection des structures et détection de défauts échogènes par temps de vol¹
- Développement de modèles numériques pour l'analyse physique : calcul des courbes de dispersion², de la propagation³ (réponse forcée) et de la diffraction des ondes guidées

¹Laguerre et Treyssède, Europ. J. Env. Civ. Eng. 2011

²Nguyen et al., J. Sound Vib. 2015

³Gallezot et al., J. Comp. Phys. 2018

Intérêt pour une méthode d'imagerie et difficultés associées

Information (idéale) recherchée

Image de défauts abrupts (fissures, cavités...) dans un guide élastique ouvert, avec localisation dans la direction de propagation du guide et dans la section du guide

Difficultés

Des phénomènes de propagation complexes... :

- onde dispersive (variation de la vitesse avec la fréquence)
- onde multimodale

...mais qui contiennent beaucoup d'informations !

+ atténuation par fuites (rayonnement) dans le milieu environnant

+ accès limité à la structure : configuration en réflexion (backscattering)

ightarrow méthode de type linear sampling method⁴ ou imagerie topologique⁵

⁴Cf. thèse d'A. Recoquillay, 2018

⁵En guide d'onde élastique : Rodriguez et al., Ultrasonics, 2014

Sommaire

Contexte

Imagerie topologique d'un guide ouvert

3 Résultats

Perspectives et discussions

 (ρ_0, c_{l0}, c_{s0})

 Ω

(1)

Cadre du problème inverse

c.à.d identifier la répartition de défauts réelle dans le milieu

Gradient topologique

Développement de la fonctionnelle pour un petit changement de topologie du milieu⁶ :

$$j(\Omega) = j(\Omega_0) + f(\epsilon)g(\mathbf{x}) + o(f(\epsilon)), \quad \forall \mathbf{x} \in \Omega_0, (\epsilon \to 0), f(\epsilon) > 0$$
(2)

 Ω_0 : milieu supposé connu et sans défaut (à l'itération 0)

⁶Bonnet, Comp. Meth. Appl. Mech. Eng. 2006 ; Dominguez, Wave Motion et al., 2005

Gradient topologique

Développement de la fonctionnelle pour un petit changement de topologie du milieu⁶ :

$$j(\Omega) = j(\Omega_0) + f(\epsilon)g(\mathbf{x}) + o(f(\epsilon)), \quad \forall \mathbf{x} \in \Omega_0, (\epsilon \to 0), f(\epsilon) > 0$$
(2)

 Ω_0 : milieu supposé connu et sans défaut (à l'itération 0)

Gradient topologique $g(\mathbf{x})$

Sensibilité de la fonctionnelle à l'inclusion d'un défaut en tout point $x \in \Omega_0$. Image obtenue = représentation spatiale du gradient. Dépend du champ direct et du champ adjoint :

$$g(\mathbf{x}) = \mathsf{Re}\bigg(\int_{\mathbb{R}^+} [\sigma(\mathbf{v}) : (\mathcal{A} : \sigma(\mathbf{u})) - \rho \omega^2 \mathbf{v} \cdot \mathbf{u}] d\omega\bigg), \forall \mathbf{x} \in \Omega_0$$
(3)

⁶Bonnet, Comp. Meth. Appl. Mech. Eng. 2006 ; Dominguez, Wave Motion et al., 2005

Précisions sur les modèles utilisés

Problème de synthèse

Simulation du champ réel : modèle propagation + diffraction des ondes guidées

Précisions sur les modèles utilisés

Problème de synthèse

Simulation du champ réel : modèle propagation + diffraction des ondes guidées

Problèmes direct et adjoint

Milieu sain (itération 0) \rightarrow pas de défaut donc même modèle de propagation, seules les sources diffèrent.

Modèle basé sur un formalisme modal:

- Calcul des modes de propagation : résolution d'un problème aux valeurs propres. Coûteux mais réalisé seulement une fois.
- 2 Décomposition modale :

$$\mathbf{U}(z,\omega) = \sum_{m=1}^{M} \mathbf{E}_m \hat{\mathbf{F}}(k_m) \mathrm{e}^{\mathrm{j}k_m z}$$
(4)

Permet d'obtenir le champ en tout point de guide pour une source quelconque (calcul très rapide).

	t		÷	

Sommaire

Contexte

Imagerie topologique d'un guide ouvert

8 Résultats

Perspectives et discussions

Description du cas test

Configuration du guide :

• Guide fermé : pas de milieu environnant

Description du cas test

Configuration du guide :

- Guide fermé : pas de milieu environnant
- Acier viscoélastique (modèle de Kelvin-Voigt)

Description du cas test

Configuration du guide :

- Guide fermé : pas de milieu environnant
- Acier viscoélastique (modèle de Kelvin-Voigt)
- Axisymétrie : modes longitudinaux (de compression)

Description du cas test

Configuration du guide :

- Guide fermé : pas de milieu environnant
- Acier viscoélastique (modèle de Kelvin-Voigt)
- Axisymétrie : modes longitudinaux (de compression)
- Source ponctuelle à la surface, (I) spectre monomodal (incluant dispersion) (II) spectre multimodal

Gradient utilisé

Rappel : gradient topologique $g(\mathbf{x})$

$$g(\mathbf{x}) = \mathsf{Re}\bigg(\int_{\mathbb{R}^+} [\sigma(\mathbf{v}) : (\mathcal{A} : \sigma(\mathbf{u})) - \rho\omega^2 \mathbf{v} \cdot \mathbf{u}] d\omega\bigg), \forall \mathbf{x} \in \Omega_0$$
(5)

u : champ direct ; **v** : champ adjoint ; A tenseur de polarisation spécifique du type de défaut recherché (à determiner).

Gradient utilisé

Rappel : gradient topologique $g(\mathbf{x})$

$$g(\mathbf{x}) = \mathsf{Re}\bigg(\int_{\mathbb{R}^+} [\sigma(\mathbf{v}) : (\mathcal{A} : \sigma(\mathbf{u})) - \rho\omega^2 \mathbf{v} \cdot \mathbf{u}] d\omega\bigg), \forall \mathbf{x} \in \Omega_0$$
(5)

u : champ direct ; **v** : champ adjoint ; A tenseur de polarisation spécifique du type de défaut recherché (à determiner).

Approximation du gradient

D'après Rodriguez et al., Ultrasonics 2012 :

$$g_{e}(\mathbf{x}) = |\int_{\mathbb{R}^{+}} \mathbf{u}(\mathbf{x}, \omega) . \mathbf{v}(\mathbf{x}, \omega) d\omega|, \forall \mathbf{x} \in \Omega_{0}$$
(6)

- Enveloppe du gradient : permet de supprimer des oscillations dans l'image
- Perte d'information sur la topologie du défaut : peut-on encore parler de gradient topologique ? (similaire au gradient de densité, voir par exemple Tromp *et al.*, Geophys. J. Int. 2005 en Full Waveform Inversion)

Imagerie monomodale

1 seul point source/récepteur pour le problème adjoint.

Image intégrée sur 640 fréquences. Echelle normalisée. Diamètre défaut : 0,8a $\approx \lambda_{\min}/2$,75.

- Localisation correcte suivant z (centre tâche) ; pas de précision dans la section
- La dispersion modale ne pose pas de problèmes (incluse dans les modèles)

Imagerie multimodale

1 seul point source/récepteur pour le problème adjoint.

Image intégrée sur 400 fréquences. Echelle normalisée. Diamètre défaut : 0,8a $\approx \lambda_{\min}/1, 25.$

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $\begin{array}{l} g_{e}(\mathbf{x}) = \int_{\mathbb{R}^{+}} \mathbf{u}(\mathbf{x}, \omega) . \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_{0}^{T} \mathbf{u}(\mathbf{x}, t) . \mathbf{v}(\mathbf{x}, T - t) dt \\ \text{et 1D (deplacements suivant z en r=a).} \end{array}$

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $\begin{array}{l} g_{e}(\mathbf{x}) = \int_{\mathbb{R}^{+}} \mathbf{u}(\mathbf{x}, \omega) . \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_{0}^{T} \mathbf{u}(\mathbf{x}, t) . \mathbf{v}(\mathbf{x}, T - t) dt \\ \text{et 1D (deplacements suivant z en r=a).} \end{array}$

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $g_e(\mathbf{x}) = \int_{\mathbb{R}^+} \mathbf{u}(\mathbf{x}, \omega) \cdot \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_0^T \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{v}(\mathbf{x}, T - t) dt$ et 1D (déplacements suivant z en r=a).

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $\begin{array}{l} g_{e}(\mathbf{x}) = \int_{\mathbb{R}^{+}} \mathbf{u}(\mathbf{x}, \omega) . \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_{0}^{T} \mathbf{u}(\mathbf{x}, t) . \mathbf{v}(\mathbf{x}, T - t) dt \\ \text{et 1D (deplacements suivant z en r=a).} \end{array}$

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $\begin{array}{l} g_{e}(\mathbf{x}) = \int_{\mathbb{R}^{+}} \mathbf{u}(\mathbf{x}, \omega) . \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_{0}^{T} \mathbf{u}(\mathbf{x}, t) . \mathbf{v}(\mathbf{x}, T - t) dt \\ \text{et 1D (deplacements suivant z en r=a).} \end{array}$

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $g_e(\mathbf{x}) = \int_{\mathbb{R}^+} \mathbf{u}(\mathbf{x}, \omega) \cdot \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_0^T \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{v}(\mathbf{x}, T - t) dt$ et 1D (déplacements suivant z en r=a).

Imagerie multimodale : origine des artefacts

Représentation temporelle :

 $g_e(\mathbf{x}) = \int_{\mathbb{R}^+} \mathbf{u}(\mathbf{x}, \omega) \cdot \mathbf{v}(\mathbf{x}, \omega) d\omega = \frac{1}{2} \int_0^T \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{v}(\mathbf{x}, T - t) dt$ et 1D (déplacements suivant z en r=a).

- 1 paquet réfléchi ou converti → 3 paquets générés dans le problème adjoint
- Paquets des modes convertis inexistants dans le problème direct !
- En renversement temporel, voir Draeger *et al.*, JASA 1997 et Park *et al.*, Wave Motion 2009

Imagerie multimodale : réduction des artefacts

Augmentation du nombre de capteurs (\equiv sources problème adjoint). Exemple : 4 récepteurs couvrant min($\lambda_{L(0,2)}$) avec espacement de min($\lambda_{L(0,2)}$)/4 = 0,46*a*.

Image intégrée sur 400 fréquences. Echelle normalisée. Diamètre défaut : 0,8a $\approx \lambda_{\min}/1,25$

• Réduction importante des artefacts

Imagerie multimodale : réduction des artefacts

Augmentation du nombre de capteurs (\equiv sources problème adjoint). Exemple : 4 récepteurs couvrant min($\lambda_{L(0,2)}$) avec espacement de min($\lambda_{L(0,2)}$)/4 = 0,46*a*.

Image intégrée sur 400 fréquences. Echelle normalisée. Diamètre défaut : 0,8a $\approx \lambda_{\min}/1,25$

- Réduction importante des artefacts
- Localisation correcte suivant z (centre tâche) ; sensibilité (imparfaite) au défaut dans la section

Sommaire

Contexte

Imagerie topologique d'un guide ouvert

Résultats

Perspectives et discussions

Imagerie topologique en guide d'onde

• Testée en guide fermé axisymétrique

Imagerie topologique en guide d'onde

- Testée en guide fermé axisymétrique
- Monomodal : localisation suivant l'axe du guide

Imagerie topologique en guide d'onde

- Testée en guide fermé axisymétrique
- Monomodal : localisation suivant l'axe du guide
- Multimodal : semble apporter des informations supplémentaires dans la section mais artefacts car configuration d'acquisition restreinte (backscattering + capteurs à la surface)

Imagerie topologique en guide d'onde

- Testée en guide fermé axisymétrique
- Monomodal : localisation suivant l'axe du guide
- Multimodal : semble apporter des informations supplémentaires dans la section mais artefacts car configuration d'acquisition restreinte (backscattering + capteurs à la surface)
- En cours : implémentation en guide ouvert (pas d'obstacles théoriques)

Imagerie topologique en guide d'onde

- Testée en guide fermé axisymétrique
- Monomodal : localisation suivant l'axe du guide
- Multimodal : semble apporter des informations supplémentaires dans la section mais artefacts car configuration d'acquisition restreinte (backscattering + capteurs à la surface)
- En cours : implémentation en guide ouvert (pas d'obstacles théoriques)

Discussion

On suppose la situation d'imagerie idéale en guide d'onde (à vérifier) : acquisition en réflexion, en transmission, à la surface et dans la section du guide.

Quels sont les facteurs de dégradation de la qualité de l'image ? Comment optimiser l'image dans une configuration plus restreinte ?

Merci pour votre attention !