Modélisation numérique des guides d'onde tridimensionnels à section symétrique par rotation

Fabien Treyssède
IFSTTAR, GERS, GeoEND, F-44344 Bouguenais, France

CFA 2018, 14ème Congrès Français d'Acoustique, Le Havre, 23-27 avril 2018

IFSTTAR

Contents

Introduction- Context
- State-of-the-art
- SAFERotational symmetryApplication to cablesConclusion

Context

Guided wave applications:

- dynamic analysis of elongated structures
- examples:
- Non Destructive Evaluation (ultrasonics)
- vibration and noise reduction
- statistical energy analysis...

Generality about waveguides:

- Guided wave propagation: dispersive and multimodal
- Dispersion curves required
- Modeling tools needed

Waveguide

NDE: detecting a damage with elastic waves

Energy velocity vs. frequency in a cylindrical bar

On the modeling of elastic waveguides

Full 3D approach:

- high frequency (e.g. ultrasonics) \rightarrow fine mesh
- guided waves go to infinity \rightarrow large model
- huge computational memory required
- tedious post-processing for wave modes...

Modal approach:

- guided waves $=$ modes
- eigenvalue problem
- plates, cylinders: analytical approaches (Thomson-Haskell, ©Disperse, ...)
- arbitrary cross section: finite element discretization
- of cross-section ${ }^{1}$ (often referred to as the "SAFE" method)
- of a 3D slice with Bloch-Floquet periodic conditions ${ }^{2}$ ("WFEM")

SAFE: Semi-Analytical Finite Element method WFEM: Wave Finite Element Method

[^0]
00 •

The SAFE method: accounting for translational invariance

Variational formulation for 3D elastodynamics:

$$
\begin{equation*}
\int_{\Omega} \delta \epsilon^{T} \mathbf{C} \epsilon \mathrm{~d} V+\int_{\Omega} \rho \delta \mathbf{u}^{T} \ddot{\mathbf{u}} \mathrm{~d} V=0, \text { with } \boldsymbol{\epsilon}=\left(\mathbf{L}_{x y}+\mathbf{L}_{z} \partial / \partial z\right) \mathbf{u} \tag{1}
\end{equation*}
$$

Perform:
(1) Fourier transform along t and z :

$$
\hat{\mathbf{u}}(k, \omega)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{u}(z, t) \mathrm{e}^{-\mathrm{i}(k z-\omega t)} \mathrm{d} z \mathrm{~d} t
$$

(3) FE discretization of the cross-section (x, y) :

$$
\begin{equation*}
\Rightarrow \quad \mathbf{u}(x, y, z, t)=\mathbf{N}^{e}(x, y) \mathbf{U}^{e} e^{\mathrm{i}(k z-\omega t)} \tag{2}
\end{equation*}
$$

3D waveguide of arbitrary cross-section

Quadratic eigenvalue problem

$$
\begin{equation*}
\left[\mathbf{K}_{1}-\omega^{2} \mathbf{M}+i k\left(\mathbf{K}_{2}-\mathbf{K}_{2}^{T}\right)+k^{2} \mathbf{K}_{3}\right] \mathbf{U}=\mathbf{0} \tag{3}
\end{equation*}
$$

- problem reduced on the cross-section only
- solved for each frequency ω, solution $=$ guided modes $\left(k_{n}^{ \pm}, \mathbf{U}_{n}^{ \pm}\right)$

The SAFE method: accounting for translational invariance

Notice: $\mathbf{K}_{1}, \mathbf{K}_{3}$ and \mathbf{M} are symmetric, $\left(\mathbf{K}_{2}-\mathbf{K}_{2}^{\top}\right)$ is skew-symmetric

Properties of the quadratic eigenvalue problem

- if k_{m} is an eigenvalue, then $-k_{m}$ also (take the transpose of (3)) \Rightarrow pairs of opposite-going modes $\left\{k_{m}, \mathbf{U}_{m}\right\}$ and $\left\{-k_{m}, \mathbf{U}_{-m}\right\}$
- the orthogonality relation between modes is:

$$
\begin{equation*}
i \frac{\omega}{4}\left(\mathbf{T}_{-m^{\prime}}^{\top} \mathbf{U}_{m}-\mathbf{U}_{-m^{\prime}}^{\top} \mathbf{T}_{m}\right)=Q_{m,-m^{\prime}} \delta_{m m^{\prime}} \tag{4}
\end{equation*}
$$

This biorthogonality relation:

- is general (remains applicable for non-propagating modes, fully anisotropic materials and lossy waveguides... no assumptions needed)
- is actually a discrete version of Auld's real biorthogonality relationship ${ }^{3}$
- can be simplified in some particular cases (Auld's complex relation, Fraser's relation ${ }^{4}$)

[^1]
0000

Contents

Introduction(2) Rotational symmetry

- Examples
- Implementation
- Properties of the eigenvalue problemApplication to cables

4. Conclusion

Rotationally symmetric cross-sections: we can do better

$\mathrm{N}=5$
Examples of rotational symmetry

Rotational symmetry $=$ circular periodicity

- Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

$\mathbf{U}_{r}=\lambda \mathbf{U}_{l}, \quad \mathbf{F}_{r}=-\lambda \mathbf{F}_{l}$
$\lambda=\mathrm{e}^{\mathrm{i} \mu}$ (i μ : propagation constant)
straight periodicity, unit cell

Rotationally symmetric cross-sections: we can do better

$\mathrm{N}=$

$\mathrm{N}=5$
Examples of rotational symmetry

Rotational symmetry $=$ circular periodicity

- Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

$$
\begin{aligned}
& \mathbf{U}_{r}=\lambda \mathbf{U}_{l}, \quad \mathbf{F}_{r}=-\lambda \mathbf{F}_{l} \\
& \lambda=\mathrm{e}^{\mathrm{i} \mu}(\mathrm{i} \mu: \text { propagation } \\
& \text { constant })
\end{aligned}
$$

straight periodicity, unit cell

- In case of circular periodicity: $\lambda^{N}=1$ (N : order of rotational symmetry)

$$
\begin{aligned}
& \lambda(n)=\mathrm{e}^{\mathrm{i} 2 n \pi / N} \\
& n= \begin{cases}-\frac{N}{2}+1, \ldots, 0, \ldots, \frac{N}{2} & \text { for } n \text { even } \\
-\frac{N-1}{2}, \ldots, 0, \ldots, \frac{N-1}{2} & \text { for } n \text { odd }\end{cases}
\end{aligned}
$$

circular periodicity with N cells

Accounting for rotational symmetry in SAFE

(1) Partition of dofs in SAFE:

$$
\begin{array}{r}
\left\{\mathbf{K}_{1}-\omega^{2} \mathbf{M}+\mathrm{i} k\left(\mathbf{K}_{2}-\mathbf{K}_{2}^{\top}\right)+k^{2} \mathbf{K}_{3}\right\} \mathbf{U}=\mathbf{F} \\
\mathbf{U}=\left[\mathbf{U}_{l}^{\top} \mathbf{U}_{i}^{\top} \mathbf{U}_{r}^{\top}\right]^{\top} \text { and } \mathbf{F}=\left[\mathbf{F}_{l}^{\top} \mathbf{F}_{i}^{\top} \mathbf{F}_{r}^{\top}\right]^{\top}
\end{array}
$$

(3) Elasticity variables $=\mathbf{U}$ and $\mathbf{F} \rightarrow$ vectorial fields written in a Cartesian frame!

$$
\begin{array}{r}
\mathbf{Q}_{r} \mathbf{U}_{r}=\lambda \mathbf{Q}_{l} \mathbf{U}_{l} \\
\mathbf{Q}_{r} \mathbf{F}_{r}=-\lambda \mathbf{Q}_{l} \mathbf{F}_{l} \tag{6b}
\end{array}
$$

$\mathbf{Q}_{l, r}$: transformation matrices from Cartesian to cylindrical frames
(3) Build the projection matrix \mathbf{R} from Eq. (6a):

$$
\mathbf{U}=\mathbf{R}(n) \tilde{\mathbf{U}}, \quad \mathbf{R}(n)=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} \\
\lambda(n) \mathbf{Q}_{r}^{-1} \mathbf{Q}_{/} & \mathbf{0}
\end{array}\right], \quad \tilde{\mathbf{U}}=\left[\begin{array}{l}
\mathbf{U}_{l} \\
\mathbf{U}_{i}
\end{array}\right] .
$$

(9) Trick: left multiply SAFE by \mathbf{R}^{*}

$$
\left[\tilde{\mathbf{K}}_{1}(n)-\omega^{2} \tilde{\mathbf{M}}(n)+i k\left(\tilde{\mathbf{K}}_{2}(n)-\tilde{\mathbf{K}}_{2}(-n)^{\top}\right)+k^{2} \tilde{\mathbf{K}}_{3}(n)\right] \tilde{\mathbf{U}}=\mathbf{R}(n)^{*} \mathbf{F} \quad \text { with }(\tilde{\cdot})=\mathbf{R}^{*}(\cdot) \mathbf{R}
$$

Accounting for rotational symmetry in SAFE

(1) Partition of dofs in SAFE:

$$
\begin{array}{r}
\left\{\mathbf{K}_{1}-\omega^{2} \mathbf{M}+\mathrm{i} k\left(\mathbf{K}_{2}-\mathbf{K}_{2}^{\top}\right)+k^{2} \mathbf{K}_{3}\right\} \mathbf{U}=\mathbf{F} \\
\mathbf{U}=\left[\mathbf{U}_{l}^{\top} \mathbf{U}_{i}^{\top} \mathbf{U}_{r}^{\top}\right]^{\top} \text { and } \mathbf{F}=\left[\mathbf{F}_{l}^{\top} \mathbf{F}_{i}^{\top} \mathbf{F}_{r}^{\top}\right]^{\top}
\end{array}
$$

(1) Elasticity variables $=\mathbf{U}$ and $\mathbf{F} \rightarrow$ vectorial fields written in a Cartesian frame!

$$
\begin{array}{r}
\mathbf{Q}_{r} \mathbf{U}_{r}=\lambda \mathbf{Q}_{/} \mathbf{U}_{l} \\
\mathbf{Q}_{r} \mathbf{F}_{r}=-\lambda \mathbf{Q}_{l} \mathbf{F}_{l} \tag{6b}
\end{array}
$$

$\mathbf{Q}_{l, r}$: transformation matrices from Cartesian to cylindrical frames
(3) Build the projection matrix \mathbf{R} from Eq. (6a):

$$
\mathbf{U}=\mathbf{R}(n) \tilde{\mathbf{U}}, \quad \mathbf{R}(n)=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} \\
\lambda(n) \mathbf{Q}_{r}^{-1} \mathbf{Q}_{/} & \mathbf{0}
\end{array}\right], \quad \tilde{\mathbf{U}}=\left[\begin{array}{l}
\mathbf{U}_{l} \\
\mathbf{U}_{i}
\end{array}\right] .
$$

(9) Trick: left multiply SAFE by \mathbf{R}^{*}

$$
\left[\tilde{\mathbf{K}}_{1}(n)-\omega^{2} \tilde{\mathbf{M}}(n)+i k\left(\tilde{\mathbf{K}}_{2}(n)-\tilde{\mathbf{K}}_{2}(-n)^{\top}\right)+k^{2} \tilde{\mathbf{K}}_{3}(n)\right] \tilde{\mathbf{U}}=\mathbf{R}(n)^{*} \mathbf{F}=\mathbf{0} \text { with }(\tilde{\cdot})=\mathbf{R}^{*}(\cdot) \mathbf{R}
$$

And notice that $\mathbf{R}(n)^{*} \mathbf{F}=\left[\begin{array}{c}\mathbf{F}_{l}+\lambda(n)^{*} \mathbf{Q}_{l}^{-1} \mathbf{Q}_{r} \mathbf{F}_{r} \\ \mathbf{0}\end{array}\right]=0$ from Eq. (6b)

Accounting for rotational symmetry in SAFE

Notice: $\tilde{\mathbf{K}}_{1}(n), \tilde{\mathbf{K}}_{3}(n)$ and $\tilde{\mathbf{M}}(n)$ are still symmetric, but... $\left(\tilde{\mathbf{K}}_{2}(n)-\tilde{\mathbf{K}}_{2}(-n)^{\top}\right)$ is no longer skew-symmetric

Properties of the new quadratic eigenvalue problem

- If k_{m} is an eigenvalue for the order n, then $-k_{m}$ also.. but for the order $-n$! \Rightarrow pairs of opposite-going modes $\left\{k_{m}^{(n)}, \tilde{\mathbf{U}}_{m}^{(n)}\right\}$ and $\left\{-k_{m}^{(n)}, \tilde{\mathbf{U}}_{-m}^{(-n)}\right\}$
- The biorthogonality relation between modes is now:

$$
\begin{equation*}
\mathrm{i} \frac{\omega}{4}\left(\tilde{\mathbf{T}}_{-m^{\prime}}^{(-n) \mathrm{T}} \tilde{\mathbf{U}}_{m}^{(n)}-\tilde{\mathbf{U}}_{-m^{\prime}}^{(-n) \mathrm{T}} \tilde{\mathbf{T}}_{m}^{(n)}\right)=Q_{m,-m^{\prime}}^{(n,-n)} \delta_{m m^{\prime}} \tag{7}
\end{equation*}
$$

which requires the solution of 2 eigenvalue problems: $+n$ and $-n$

Accounting for rotational symmetry in SAFE

Notice: $\tilde{\mathbf{K}}_{1}(n), \tilde{\mathbf{K}}_{3}(n)$ and $\tilde{\mathbf{M}}(n)$ are still symmetric, but... $\left(\tilde{\mathbf{K}}_{2}(n)-\tilde{\mathbf{K}}_{2}(-n)^{\top}\right)$ is no longer skew-symmetric

Properties of the new quadratic eigenvalue problem

- If k_{m} is an eigenvalue for the order n, then $-k_{m}$ also.. but for the order $-n$! \Rightarrow pairs of opposite-going modes $\left\{k_{m}^{(n)}, \tilde{\mathbf{U}}_{m}^{(n)}\right\}$ and $\left\{-k_{m}^{(n)}, \tilde{\mathbf{U}}_{-m}^{(-n)}\right\}$
- The biorthogonality relation between modes is now:

$$
\begin{equation*}
i \frac{\omega}{4}\left(\tilde{\mathbf{T}}_{-m^{\prime}}^{(-n) \mathrm{T}} \tilde{\mathbf{U}}_{m}^{(n)}-\tilde{\mathbf{U}}_{-m^{\prime}}^{(-n) \mathrm{T}} \tilde{\mathbf{T}}_{m}^{(n)}\right)=Q_{m,-m^{\prime}}^{(n,-n)} \delta_{m m^{\prime}} \tag{7}
\end{equation*}
$$

which requires the solution of 2 eigenvalue problems: $+n$ and $-n$
... [tedious calculation]... And the forced response in a given cell s is:
${ }^{s} \tilde{\mathbf{U}}=\sum_{n} \sum_{m>0} \frac{\mathrm{i} \omega}{4 Q_{m,-m}^{(n,-n)}} \tilde{\mathbf{U}}_{m}^{(n)} \tilde{\mathbf{U}}_{-m}^{(-n) \mathrm{T}} \tilde{\mathbf{F}}_{\mathrm{ext}}^{(n)}\left(k_{m}^{(n)}\right) \mathrm{e}^{\mathrm{i} k_{m}^{(n)} z} \mathrm{e}^{\mathrm{i} \frac{2 \pi n s}{N}} \quad$ with $\mathbf{F}_{\text {ext }}^{(n)}=\frac{1}{N} \sum_{s=0}^{N-1}{ }^{s} \mathbf{F}_{\mathrm{ext}} \mathrm{e}^{-\mathrm{i} \frac{2 \pi n s}{N}}$
Note: degeneracy to the axisym. case (Fourier series)

Contents

 Introduction}(2) Rotational symmetry

3 Application to cables

- Description of the problem
- Note on translational invariance
- The seven-wire strand

4. Conclusion

Description of the problem

Main motivation of this work $=$ NDE of cables (damage detection, tension estimation,...)

A common configuration for bridge cables: the seven-wire strand

Modeling difficulties:

- helical geometry \rightarrow translational invariance is not straight...
- multiwire waveguides \rightarrow rotational symmetry frequently occurs
+ prestress and mechanical contact ${ }^{5}$ (out of the scope of this talk)

[^2]
Note on translational invariance: twisting coordinates

Basic assumption for guided waves: $\propto e^{i k z} \rightarrow$ variables must be separable

- translational invariance required
- specific coordinate system needed ${ }^{6}$

Twisting system

- curvilinear coordinate system with zero curvature κ but non zero torsion τ $\kappa=0, \tau=2 \pi / L$ (L : period of helical wires)
- the axis z remains straight but the (x, y) plane rotates with z

The differential operators of the SAFE method must be written in this system, e.g.:
$\nabla_{0} \mathbf{u}=\left(u_{i, j}-\Gamma_{i j}^{k} u_{k}\right) \mathbf{g}^{i} \otimes \mathbf{g}^{j}=\ldots=\left[\begin{array}{ccc}u_{x, x} & u_{x, y} & \Lambda u_{x}-\tau u_{y}+u_{x, z} \\ u_{y, x} & u_{y, y} & \tau u_{x}+\Lambda u_{y}+u_{y, z} \\ u_{z, x} & u_{z, y} & \Lambda u_{z}+u_{z, z}\end{array}\right]_{\left(\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right)}$,
with $\Lambda=\tau\left(y(\cdot)_{, x}-x(\cdot)_{, y}\right)$

[^3]
0000

Results: dispersion curves for a seven-wire strand

Steel, $a=2.7 \mathrm{~mm}, \phi=7.9^{\circ}(\tau a=0.0705)$, tensile prestress $(e=0.6 \%)$, excitation of periph. wire

Energy velocity vs. frequency with modal amplitudes computed with the complete model (grey points), with the reduced model for $n=0(\circ), n=1(+)$ and $n=-1(\times)$

Same results, computational time reduced by a factor ~ 13 (for a given n)

Contents

IntroductionRotational symmetryApplication to cables4 Conclusion

Conclusion: application to more complex cables

(1) Conductor: Compact stranded copper conducfor, Cl .2 as per IEC 60228
(2) Conducfor Screen: Semi-conducfor
(3) Insulation: XLPE (cross-linked polyethylene) rated at $90^{\circ} \mathrm{C}$
(4) Insulation Screen: Semi-conductor
(5) Screen: Copper fape
(6) Inner covering : PVC
(7) Armoring:Galvanized steel wire - 3 cores
(8) Sheath: PVC or FR-PVC type ST2 to IEC 60502, black
architecture of a umbilical power cable

Complete mesh: $\sim 1,000,000$ dofs computation not achievable...

Our goal $=$ NDE of armor

Conclusion: application to more complex cables

PE-steel-PE, $a=2.25 \mathrm{~mm}, \phi=14^{\circ}$, prestress ($0.1 \%+5$ bars), damping ($\kappa_{I}=0.02, \kappa_{s}=0.16 \mathrm{~Np} / \lambda$)

Rotationally symmetric cell ($N=50,22587$ dofs)

Energy velocity vs. frequency for $n=0$

Energy velocity vs. frequency for $n=N / 2$

[^0]: ${ }^{1}$ Lagasse JASA 1973, Aalami JAM 1973, Hayashi et al. Ultrasonics 2003, Bartoli et al. JSV 2006,...
 ${ }^{2}$ Gry et al. JSV 1997, Mace et al. JASA 2005,...

[^1]: ${ }^{3}$ Auld, Acoustic Fields and Waves in Solids, 1990
 ${ }^{4}$ Fraser, JASA, 1976

[^2]: ${ }^{5}$ Frikha et al. IJSS 2013, Treyssède JSV 2016

[^3]: ${ }^{6}$ Treysséde and Laguerre JSV 2010

