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Introduction
o

Context

Guided wave applications:

@ dynamic analysis of elongated =
damage
structures -
W~ WV
@ examples: incident wave

reflected wave transmitted wave

— Non Destructive Evaluation
(ultrasonics)

— vibration and noise reduction

— statistical energy analysis...

NDE: detecting a damage with elastic waves

a1}

Generality about waveguides:

S

9 Guided wave propagation: dispersive
and multimodal

N

@ Dispersion curves required

Energy velocity (m/ms)
w

9 Modeling tools needed

75

5 10 15 20
Frequency-radius (MHz.mm)

Energy velocity vs. frequency in a cylindrical bar
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On the modeling of elastic waveguides

Full 3D approach:
@ high frequency (e.g. ultrasonics) — fine mesh
9 guided waves go to infinity — large model
9 huge computational memory required

9 tedious post-processing for wave modes...

Modal approach:
¢ guided waves = modes
@ eigenvalue problem

@ plates, cylinders: analytical approaches (Thomson-Haskell, ©Disperse, ...)
9 arbitrary cross section: finite element discretization

— of cross-section! (often referred to as the “SAFE" method)
— of a 3D slice with Bloch-Floquet periodic conditions® (“WFEM")

SAFE: Semi-Analytical Finite Element method
WFEM: Wave Finite Element Method

1Lagasse JASA 1973, Aalami JAM 1973, Hayashi et al. Ultrasonics 2003, Bartoli et al. JSV 2006,...
2Gry et al. JSV 1997, Mace et al. JASA 2005,...
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The SAFE method: accounting for translational invariance
Variational formulation for 3D elastodynamics:
/ 5eTCedV + / pouTiEdV = 0, with € = (Lo, + L8/02)u (1)
Q Q

Perform:

O Fourier transform along t and z:
+o0 +o0o .
(K, w) = / / u(z, t)e—ke=wdzdy
— 00 —00

Q FE discretization of the cross-section (x, y):

. 3D waveguide of
= U(Xy y,z, t) = Ne(Xy y)Ueel(kziwﬂ (2) arbitrary
cross-section

Quadratic eigenvalue problem

[K1 — w?M + ik(Ky — KJ) + k’K3]U = 0 (3)

@ problem reduced on the cross-section only

@ solved for each frequency w, solution = guided modes (k,ﬁ‘:7 U,:,E) SAFE mesh
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The SAFE method: accounting for translational invariance

Notice: K1, K3 and M are symmetric, (K2 — K;—) is skew-symmetric

Properties of the quadratic eigenvalue problem

@ if km is an eigenvalue, then —km, also (take the transpose of (3))
= pairs of opposite-going modes {km,Um} and {—km,U_n}

9 the orthogonality relation between modes is:

i% (TIm,um - uIm,Tm) = Qunr— S (4)

This biorthogonality relation:

@ is general (remains applicable for non-propagating modes, fully anisotropic
materials and lossy waveguides... no assumptions needed)

@ is actually a discrete version of Auld’s real biorthogonality relationship3

@ can be simplified in some particular cases (Auld’'s complex relation, Fraser's
relation)

3Au|d, Acoustic Fields and Waves in Solids, 1990
“Fraser, JASA, 1976
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Rotational symmetry
[ ]

Rotationally symmetric cross-sections: we can do better

N=2 N=3  N=4 N5 ...
Examples of rotational symmetry

Rotational symmetry = circular periodicity

9 Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

| I | | | U, = \U;, F, = —\F,
X\ =e* (iu: propagation
L ® constant)

straight periodicity, unit cell
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Rotational symmetry
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Rotationally symmetric cross-sections: we can do better

N=2 N=3  N=4 N5 ...
Examples of rotational symmetry

Rotational symmetry = circular periodicity

9 Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

| I | | | U, = \U;, F, = —\F,
X\ =e* (iu: propagation
L ® constant)

straight periodicity, unit cell

@ In case of circular periodicity: AN =1 (N: order of rotational symmetry)

/‘\vi A(n) = e2/N
-¥41,...,0..,4 for n even
V n= N-1 N2
=550, T for n odd
circular periodicity with N cells
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Rotational symmetry
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Accounting for rotational symmetry in SAFE

Q Partition of dofs in SAFE:

U, F
{K1 — w?M + ik(Ko — KI) + kK3 }U = F v
U=[U/ U] U[]" and F = [F] F] F[]"
U‘TF,
Q Elasticity variables = U and F — vectorial fields written in a Cartesian frame!
Q/U, = QU (6a)
Q,F, = - \Q/F, (6b)

Q,,,: transformation matrices from Cartesian to cylindrical frames
9 Build the projection matrix R from Eq. (6a):

~ 1 0 B U
U=R(n0, R(n) = 0 1, 0= {u/} .
A(MQ;'Q 0 '
O Trick: left multiply SAFE by R*

[K1(n) ~w?M(n)+ik(Ra(n)—Ra(=n)T)+ K Ks(n)]0 = R(n)*F  with (-) = R*()R |
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Rotational symmetry
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Accounting for rotational symmetry in SAFE

Q Partition of dofs in SAFE:

U, F
{K1 — w?M + ik(Ko — KI) + kK3 }U = F v
U=[U/ U] U[]" and F = [F] F] F[]"
U‘TF,
Q Elasticity variables = U and F — vectorial fields written in a Cartesian frame!
Q/U, = QU (6a)
Q,F, = - \Q/F, (6b)

Q,,,: transformation matrices from Cartesian to cylindrical frames
9 Build the projection matrix R from Eq. (6a):

~ 1 0 B U
U=R(n0, R(n) = 0 1, 0= {u/} .
A(MQ;'Q 0 '
O Trick: left multiply SAFE by R*

[K1(n) ~?M(n)+ik(Ra(n)—Ka(=n)")+kKs(n)]0 = R(n)*F = 0 with (-) = R*()R |

F/+A(n)*Q; 'Q,F,
0 9/17
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Rotational symmetry
o

Accounting for rotational symmetry in SAFE

Notice: IN(1~(n), Ks(n) and M(n) are still symmetric, but...
(Ka(n) — Ka(=n)T) is no longer skew-symmetric

Properties of the new quadratic eigenvalue problem

9 If kn is an eigenvalue for the order n, then —km also.. but for the order —n!

= pairs of opposite-going modes {k,(,: , } and {— km s U( m }
@ The biorthogonality relation between modes is now:
Wz (=n)Tr(n) == )T -
= (PO - 05TTED) = QU W)

which requires the solution of 2 eigenvalue problems: +n and —n
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Rotational symmetry
o

Accounting for rotational symmetry in SAFE

Notice: IN(1~(n), Ks(n) and M(n) are still symmetric, but...
(Ka(n) — Ka(=n)T) is no longer skew-symmetric

Properties of the new ratic eigenvalue problem

9 If kn is an eigenvalue for the order n, then —km also.. but for the order —n!
= pairs of opposite-going modes {k,(,: , } and {— km ,U( gt
@ The biorthogonality relation between modes is now:
Wz (=n)Tr(n) == )T -
= (PO - 05TTED) = QU W)

which requires the solution of 2 eigenvalue problems: +n and

—n
V.
. [tedious calculation]... And the forced response in a given cell s is:
N—-1
2m 1 i2mns
sU Z Z n)U( n)T ext(k ) |I<m E T with ngz — N SFeqe N
n m>0 4Qm —m s=0

Note: degeneracy to the axisym. case (Fourier series)

+i28n5 N—oo  _+ing 14w
N — s e ﬁf_ﬂdQ

IZN 1 N—oo
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Application to cables

Description of the problem

Main motivation of this work = NDE of cables (damage detection, tension

estimation,...)

A common configuration for bridge cables: the seven-wire strand

Metallic duct

Anchorage
= plage

Cement Qrout

Steel strands
6-+1 strand

Anchorage zone of a bridge cable
(single access=-reflectometry)

Modeling difficulties:
@ helical geometry — translational invariance is not straight...

@ multiwire waveguides — rotational symmetry frequently occurs

+ prestress and mechanical contact® (out of the scope of this talk)
12/17
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Application to cables
[ ]

Note on translational invariance: twisting coordinates

Basic assumption for guided waves: o e’ — variables must be separable
9 translational invariance required

o specific coordinate system needed®

Twisting system

@ curvilinear coordinate system with zero curvature k but non zero torsion T
k=0, 7=2m/L (L: period of helical wires)

@ the axis z remains straight but the (x, y) plane rotates with z

The differential operators of the SAFE method must be written in this system, e.g.:
. ) Ux,x  Uxy Nux —Tuy + Ux 2
Vou = (uj,j — rfkjw)g’ Qg =..=| ux Uy Tux+Auy+uy; '

Uz x Uz y Auz + Uz z (ex,ey )

with A = 7(y().x = x(-).y)
6Treysséde and Laguerre JSV 2010
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Application to cables
]

Results: dispersion curves for a seven-wire strand

Steel, a=2.7mm, ¢ = 7.9° (7a = 0.0705), tensile prestress (e = 0.6%), excitation of periph. wire

0.4 o1
1.6
14 0.08 0.08
1.2 e, ...{
; o . 0.06 0.06
<&
<08
0.04 0.04
0.6
S ¥
0.4 f= R A ; 0.02 0.02
0.2 ;-' -
0 : 0 0
0 05 1 1.5 2
wa/cs wafcs
complete model, 12369 dofs rotationally symmetric cell (N=6, 2094 dofs)

Energy velocity vs. frequency with modal amplitudes computed with the complete model (grey
points), with the reduced model for n=0 (o), n=1 (+) and n = —1 (X)

Same results, computational time reduced by a factor ~13 (for a given n)
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Conclusion

Conclusion: application to more complex cables

Consfruction
@ Conductor: Gompact stranded copper conductor, G1.2 as per [EC 60228

Gonductor Sereen: Semi-canductor

nsulation: XLPE (cross-linked polyethylene) rafed af 80°C

isulation Screen: Semi-conductor

Screen: Copper tape
nner covering : PVC
Armoring: Galvanized steel wire - 3 cores

® Sheath: PVC or FR-PVC fype ST2 fo |EC 60502, black Complete mesh: ,\/1 000 000 dofs
architecture of a umbilical power cable computation not achievable...

Our goal = NDE of armor
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Conclusion

Conclusion: application to more complex cables

PE-steel-PE, a=2.25mm, ¢=14°, prestress (0.1% + 5 bars), damping (r/=0.02, x£s=0.16Np/\)
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wale
frequency for n = N /2

walc
Energy velocity vs.
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