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Context

Guided wave applications:

dynamic analysis of elongated
structures

examples:
– Non Destructive Evaluation

(ultrasonics)
– vibration and noise reduction
– statistical energy analysis...

NDE: detecting a damage with elastic waves

Generality about waveguides:

Guided wave propagation: dispersive
and multimodal

Dispersion curves required

Modeling tools needed
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On the modeling of elastic waveguides

Full 3D approach:

high frequency (e.g. ultrasonics) → fine mesh

guided waves go to infinity → large model

huge computational memory required

tedious post-processing for wave modes...

Modal approach:

guided waves = modes

eigenvalue problem

plates, cylinders: analytical approaches (Thomson-Haskell, c©Disperse, . . .)

arbitrary cross section: finite element discretization
– of cross-section1 (often referred to as the “SAFE” method)

– of a 3D slice with Bloch-Floquet periodic conditions2 (“WFEM”)

SAFE: Semi-Analytical Finite Element method
WFEM: Wave Finite Element Method

1Lagasse JASA 1973, Aalami JAM 1973, Hayashi et al. Ultrasonics 2003, Bartoli et al. JSV 2006,...
2Gry et al. JSV 1997, Mace et al. JASA 2005,...
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The SAFE method: accounting for translational invariance

Variational formulation for 3D elastodynamics:

∫

Ω
δǫTCǫdV +

∫

Ω
ρδuT üdV = 0, with ǫ = (Lxy + Lz∂/∂z)u (1)

Perform:

1 Fourier transform along t and z :

û(k, ω) =

∫ +∞

−∞

∫ +∞

−∞

u(z , t)e−i(kz−ωt)dzdt

2 FE discretization of the cross-section (x , y):

⇒ u(x , y , z , t) = Ne(x , y)Uee i(kz−ωt) (2)
3D waveguide of

arbitrary
cross-section

Quadratic eigenvalue problem

[K1 − ω2M+ ik(K2 −KT
2 ) + k2K3]U = 0 (3)

problem reduced on the cross-section only

solved for each frequency ω, solution = guided modes (k±n ,U±
n ) SAFE mesh
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The SAFE method: accounting for translational invariance

Notice: K1, K3 and M are symmetric, (K2 −KT
2 ) is skew-symmetric

Properties of the quadratic eigenvalue problem

if km is an eigenvalue, then −km also (take the transpose of (3))
⇒ pairs of opposite-going modes {km,Um} and {−km,U−m}

the orthogonality relation between modes is:

i
ω

4

(

TT
−m′Um − UT

−m′Tm

)

= Qm,−m′δmm′ (4)

This biorthogonality relation:

is general (remains applicable for non-propagating modes, fully anisotropic
materials and lossy waveguides... no assumptions needed)

is actually a discrete version of Auld’s real biorthogonality relationship3

can be simplified in some particular cases (Auld’s complex relation, Fraser’s
relation4)

3Auld, Acoustic Fields and Waves in Solids, 1990
4Fraser, JASA, 1976
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Rotationally symmetric cross-sections: we can do better

Examples of rotational symmetry

Rotational symmetry = circular periodicity

Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

straight periodicity, unit cell

Ur = λUl , Fr = −λFl

λ = eiµ (iµ: propagation
constant)
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Rotationally symmetric cross-sections: we can do better

Examples of rotational symmetry

Rotational symmetry = circular periodicity

Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

straight periodicity, unit cell

Ur = λUl , Fr = −λFl

λ = eiµ (iµ: propagation
constant)

In case of circular periodicity: λN = 1 (N: order of rotational symmetry)

circular periodicity with N cells

λ(n) = ei2nπ/N

n =

{

−N
2
+ 1, ...,0, ..., N

2
for n even

−N−1
2

, ...,0, ..., N−1
2

for n odd
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Accounting for rotational symmetry in SAFE

1 Partition of dofs in SAFE:

{K1 − ω2M+ ik(K2 −KT
2 ) + k2K3}U = F

U = [UT
l UT

i UT
r ]

T and F = [FT
l FT

i FT
r ]

T

2 Elasticity variables = U and F → vectorial fields written in a Cartesian frame!

QrUr = λQlUl (6a)

QrFr = −λQlFl (6b)

Ql,r : transformation matrices from Cartesian to cylindrical frames
3 Build the projection matrix R from Eq. (6a):

U = R(n)Ũ, R(n) =





I 0

0 I

λ(n)Q−1
r Ql 0



 , Ũ =

[

Ul

Ui

]

.

4 Trick: left multiply SAFE by R∗

[K̃1(n)−ω2M̃(n)+ik(K̃2(n)−K̃2(−n)T)+k2K̃3(n)]Ũ = R(n)∗F with (̃·) = R∗(·)R
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Accounting for rotational symmetry in SAFE

1 Partition of dofs in SAFE:

{K1 − ω2M+ ik(K2 −KT
2 ) + k2K3}U = F

U = [UT
l UT

i UT
r ]

T and F = [FT
l FT

i FT
r ]

T

2 Elasticity variables = U and F → vectorial fields written in a Cartesian frame!

QrUr = λQlUl (6a)

QrFr = −λQlFl (6b)

Ql,r : transformation matrices from Cartesian to cylindrical frames
3 Build the projection matrix R from Eq. (6a):

U = R(n)Ũ, R(n) =





I 0

0 I

λ(n)Q−1
r Ql 0



 , Ũ =

[

Ul

Ui

]

.

4 Trick: left multiply SAFE by R∗

[K̃1(n)−ω2M̃(n)+ik(K̃2(n)−K̃2(−n)T)+k2K̃3(n)]Ũ = R(n)∗F = 0 with (̃·) = R∗(·)R

And notice that R(n)∗F =

[

Fl + λ(n)∗Q−1
l

QrFr

0

]

= 0 from Eq. (6b)
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Accounting for rotational symmetry in SAFE

Notice: K̃1(n), K̃3(n) and M̃(n) are still symmetric, but...
(K̃2(n) − K̃2(−n)T) is no longer skew-symmetric

Properties of the new quadratic eigenvalue problem

If km is an eigenvalue for the order n, then −km also.. but for the order −n!

⇒ pairs of opposite-going modes {k
(n)
m , Ũ

(n)
m } and {−k

(n)
m , Ũ

(−n)
−m }

The biorthogonality relation between modes is now:

i
ω

4

(

T̃
(−n)T
−m′ Ũ

(n)
m − Ũ

(−n)T
−m′ T̃

(n)
m

)

= Q
(n,−n)
m,−m′δmm′ (7)

which requires the solution of 2 eigenvalue problems: +n and −n
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Accounting for rotational symmetry in SAFE

Notice: K̃1(n), K̃3(n) and M̃(n) are still symmetric, but...
(K̃2(n) − K̃2(−n)T) is no longer skew-symmetric

Properties of the new quadratic eigenvalue problem

If km is an eigenvalue for the order n, then −km also.. but for the order −n!

⇒ pairs of opposite-going modes {k
(n)
m , Ũ

(n)
m } and {−k

(n)
m , Ũ

(−n)
−m }

The biorthogonality relation between modes is now:

i
ω

4

(

T̃
(−n)T
−m′ Ũ

(n)
m − Ũ

(−n)T
−m′ T̃

(n)
m

)

= Q
(n,−n)
m,−m′δmm′ (7)

which requires the solution of 2 eigenvalue problems: +n and −n

... [tedious calculation]... And the forced response in a given cell s is:

s Ũ =
∑

n

∑

m>0

iω

4Q
(n,−n)
m,−m

Ũ
(n)
m Ũ

(−n)T
−m F̃

(n)
ext(k

(n)
m )eik

(n)
m zei

2πns
N with F

(n)
ext =

1

N

N−1
∑

s=0

sFexte
−i 2πns

N

Note: degeneracy to the axisym. case (Fourier series)

e±i 2πns
N

N→∞
−−−−→ e±inθ, 1

N

∑N−1
s=0

N→∞
−−−−→

1
2π

∫ +π

−π
dθ
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Description of the problem

Main motivation of this work = NDE of cables (damage detection, tension
estimation,...)

A common configuration for bridge cables: the seven-wire strand

Anchorage zone of a bridge cable
(single access⇒reflectometry) 6+1 strand

Modeling difficulties:

helical geometry → translational invariance is not straight...

multiwire waveguides → rotational symmetry frequently occurs

+ prestress and mechanical contact5 (out of the scope of this talk)

5Frikha et al. IJSS 2013, Treyssède JSV 2016
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Note on translational invariance: twisting coordinates

Basic assumption for guided waves: ∝ e ikz → variables must be separable

translational invariance required

specific coordinate system needed6

Twisting system

curvilinear coordinate system with zero curvature κ but non zero torsion τ
κ = 0, τ = 2π/L (L: period of helical wires)

the axis z remains straight but the (x , y) plane rotates with z

The differential operators of the SAFE method must be written in this system, e.g.:

∇0u = (ui,j − Γk
ij
uk )g

i ⊗ gj = ... =





ux,x ux,y Λux − τuy + ux,z
uy,x uy,y τux + Λuy + uy,z
uz,x uz,y Λuz + uz,z





(ex ,ey ,ez )

,

with Λ = τ(y(·),x − x(·),y )
6Treysséde and Laguerre JSV 2010
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Results: dispersion curves for a seven-wire strand

Steel, a=2.7mm, φ = 7.9◦ (τa = 0.0705), tensile prestress (e = 0.6%), excitation of periph. wire

complete model, 12369 dofs rotationally symmetric cell (N=6, 2094 dofs)

Energy velocity vs. frequency with modal amplitudes computed with the complete model (grey

points), with the reduced model for n=0 (◦), n=1 (+) and n = −1 (×)

Same results, computational time reduced by a factor ∼13 (for a given n)
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Conclusion: application to more complex cables

architecture of a umbilical power cable
Complete mesh: ∼1,000,000 dofs
computation not achievable...

Our goal = NDE of armor
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Conclusion: application to more complex cables

PE-steel-PE, a=2.25mm, φ=14◦, prestress (0.1% + 5 bars), damping (κl=0.02, κs=0.16Np/λ)

Rotationally symmetric cell (N=50, 22587 dofs)

Energy velocity vs. frequency for n=0 Energy velocity vs. frequency for n = N/2
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