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Abstract: In this paper, a probabilistic analysis of an offshore monopile foundation embedded in a spatially varying clayey 

soil was performed. An efficient Kriging-based probabilistic approach using a multipoint enrichment was adopted. The aim is 

to compute the failure probability  against exceeding a threshold value on the monopile head rotation. The proposed 

probabilistic approach was shown to significantly reduce the computation time with respect to the classical Kriging-based 

approach. Some probabilistic numerical results are presented and discussed. 
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1 Introduction 

 

Recently, a Kriging-based probabilistic technique was proposed by Al-bittar et al. (2018) to compute the small 

values of the failure probability of geotechnical structures involving spatially varying soils. This technique 

(called AK-MCS) is an Active learning method combining Kriging with Monte Carlo Simulation MCS method. 

Other active learning methods may be found in literature as the active learning method by Huang et al. (2016) 

that combines Kriging and Subset Simulation and the global sensitivity analysis-enhanced surrogate (GSAS) 

modeling suggested by Hu and Mahadevan (2016). Although the AK-MCS method has been proved to require a 

reduced number of calls to the mechanical model with respect to the variance reduction techniques such as 

Subset Simulation SS and Asymptotic Sampling AS, it remains time-consuming in the case of costly-to-evaluate 

mechanical models such as the three-dimensional mechanical model considered in this paper.  

In order to reduce the computation time, an improved probabilistic model is suggested in this paper. This model 

is an extension of the AK-MCS approach in which a multipoint enrichment technique is used. It is called AK-

MCSm (where m stands for multi-enrichment). A relevant clustering technique [see Lelièvre et al. (2018)] was 

adopted. This technique allows one to consider a set of training samples that ensures a suitable coverage of the 

limit state surface.  

In this paper, one performs a probabilistic analysis at the ultimate limit state (ULS) of a monopile 

foundation embedded in a spatially varying soil making use of the relevant multi-enrichment approach AK-

MCSm. The aim is to compute the failure probability  against exceeding a threshold value on the monopile 

head rotation. 

 

2 Soil-Monopile Mechanical Model 

 
The mechanical model of the 3D soil-monopile system has been carried out based on numerical simulations 

using the commercial finite element software Abaqus (2016). An open-ended steel monopile of diameter D=4m 

was studied in this paper. The monopile of 0.05 m thickness and an embedment depth L of 24 m was extended of 

1.0 m above the seabed to avoid the soil from going over the monopile. The steel monopile has a density of 7840 

. It was assumed to behave as a linear elastic material with Young modulus  of 210 GPa and Poisson 

ratio  of 0.3.  

The soil consists of an undrained normally consolidated clay. It was supposed to follow an elastic-perfectly 

plastic model based on Tresca criterion. This model is defined by the undrained cohesion , the undrained 

Young modulus ( ) and the undrained Poisson ratio ( ). In this paper, the soil was assumed to have a 

submerged unit weight of 7  and an undrained Poisson ratio of 0.495. The undrained cohesion was 

supposed to linearly vary with depth as follows: 

                                                                                                    (1) 

where  is the effective vertical overburden stress. This represents an increase in  from its initial value at 

mudline (taken here equal to ) at a rate of about . These adopted values are typical for a 
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normally consolidated offshore clay [cf. Dean (2010)]. Notice that the soil undrained Young modulus was 

assumed to be linearly related to the soil undrained cohesion via the relationship  where  is a 

correlation factor that is dependent on the clay plasticity index  and the over-consolidation ratio OCR [cf. 

USACE (1990)]. Thus, the soil Young modulus was also supposed to linearly vary with depth. For a plasticity 

index  and an over-consolidation ratio of 1, a value of  is adopted in this work [cf. USACE 

(1990)]. 

          
                                            (a)                                                                       (b) 

Figure 1. (a) Three-dimensional soil-monopile numerical model (b) Moment-rotation curve of the monopile at 

mud-line level. 

As may be seen from Figure 1(a), the numerical model has a length of 12D, a width of 6D and a height of 1.6 L. 

Details on the numerical modeling of the soil-monopile system are not provided herein. The reader may refer to 

El Haj et al. (2019). 

In this paper, the monopile was considered to be subjected to a horizontal load  acting at a 

height =38.6m above the seabed level. This results in an additional moment at mudline of . A 

vertical load  of  2 MN that represents the structure weight was also considered in the analysis. The applied 

loadings adopted in this study induced a head rotation at mudline (as computed by Abaqus software) of nearly 

.  

Concerning the determination of the ultimate rotation at the monopile head, a load-controlled procedure was 

used. The corresponding moment-rotation curve is shown in Figure 1(b). As it may be seen from this figure, the 

ultimate rotation was determined by the tangent intersection method (point A) leading to a limit rotation of 

 and a corresponding ultimate moment capacity at mudline of . This 

corresponds to an ultimate horizontal force of . The obtained ultimate value of the monopile head 

rotation will be used afterwards in this paper as a threshold value when handling the probabilistic analysis. 

 

3 Probabilistic Model 

 

The soil undrained cohesion  was considered as a log-normal random field with a constant coefficient of 

variation of 25%. The mean values of the soil undrained cohesion are those of the deterministic analysis 

provided in the preceding section. Concerning the autocorrelation function, a square exponential function  

 was used in this paper. The soil undrained Young modulus was implicitly considered as a random 

field having the same distribution as the soil undrained cohesion since it was assumed to be linearly related to the 

soil cohesion. 

Notice that the discretization of the cohesion random field was performed using EOLE method proposed by 

Li and Der Kiureghian (1993). Notice also that the discretization of a random field by EOLE leads to an 

expression that provides the value of this random field at each point of the soil mass as a function of  standard 

Gaussian random variables (this number  is equal to the number of eigenmodes). Notice finally that the 

realizations of the Young modulus random field can be easily obtained from the realizations of the cohesion 

random field by multiplying the values of the soil cohesion by 500.  

The probabilistic analysis at ULS aims at computing the failure probability  against exceeding a threshold 

value on the ultimate rotation of the monopile head. The performance function is given by: 

                                                                                                                                                        (2) 
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where  is the ultimate rotation of the monopile head as was determined before using the mean values of  

and  ( ) and  is the monopile head rotation under the applied loading for typical realizations of  

and . The computation time of  for each simulation via Abaqus software was equal to about one hour. 

The AK-MCSm probabilistic method used in this paper is based on Kriging metamodeling. Notice that the 

Kriging consists in constructing a meta-model based on a few number of samples (called Design of Experiment 

DoE) computed using the mechanical model. The predicted response at an unknown sample (based on the 

constructed Kriging meta-model) is a Gaussian random variate characterized by a mean prediction value and a 

corresponding prediction variance. The construction of a Kriging metamodel can be easily performed using 

DACE (Design and Analysis of Computer Experiments) toolbox in Matlab. For more details, the reader may 

refer to Lophaven et al. (2002). The present probabilistic AK-MCSm procedure consists of two main stages. 

These two stages may be described as follows: 

 

3.1    Construction of a preliminary Kriging metamodel 

In this stage, one first generates a MCS population of  samples . Each sample 

 is a vector of M standard Gaussian random variables where M is the number of random variables required by 

EOLE methodology to accurately discretize the random field. Secondly, a small design of experiment DoE 

(taken equal to 15 samples) is randomly selected from the generated population. Each sample of the DoE is 

transformed (using EOLE) into a realization of  and a corresponding realization of  using . 

These realizations are used as inputs for the mechanical model while computing the sample system response (i.e. 

monopile head rotation ) and the corresponding performance function value. 

By using the DACE toolbox [cf. Lophaven et al. (2002)], an approximate Kriging meta-model may be 

constructed in the standard space of random variables on the basis of the DoE and the corresponding 

performance function values. This meta-model may be used to compute the MCS failure probability  and its 

corresponding coefficient of variation . It should be noted that the value of  and the corresponding 

value of  computed so far are not sufficiently accurate. This is because of the very small number of 

samples (i.e. small size of the DoE) used to construct the present preliminary Kriging metamodel. Thus, an 

enrichment process is needed. 

 

3.2    Enrichment process 

The enrichment process is done via an active learning technique. The learning phase stops once the metamodel 

becomes sufficiently accurate for the computation of the failure probability, which is indicated by a stopping 

criterion. The aim of the next two subsections is to present the way of selection of the new training samples 

during the enrichment process and the adopted stopping criterion. 

 

3.2.1    Selection of new training samples 

The enrichment process of the AK-MCS method is performed using a learning function U defined by the 

following equation [see Echard et al. (2011)]:  

                                                                                                                      (3) 

where  is the square root of the Kriging prediction variance. The sample that has the minimum value of U is 

selected for the enrichment since it is considered to have the highest probability of being misclassified (i.e. the 

highest probability to have a wrong performance function sign) as was stated by Echard et al. (2011). It should 

be remembered that AK-MCS method involves a single sample per iteration of the enrichment process. In order 

to overcome this shortcoming, a multipoint enrichment procedure is adopted in this paper.  

Lelièvre et al. (2018) proposed a clustering technique, named K-weighted-means clustering algorithm (K-w-

means), that takes benefit of the information provided by the AK-MCS learning function. The K-w-means 

technique consists in replacing the mean of each cluster by a weighted one making use of the learning function U. 

In this way, each sample will be weighted by the corresponding uncertainty of being misclassified (i.e. the 

uncertainty to have a wrong sign of its performance function) and thus, the obtained centroids of the different 

clusters will be the optimal ones for the enrichment. In other words, the selected samples will be situated in the 

highly uncertain zone (i.e. the zone corresponding to a high uncertainty on the sign of the performance function) 

all along the limit state surface leading to an efficient multipoint enrichment of the Kriging meta-model. This 

approach is used in this paper. For more details, the reader may refer to El Haj and Soubra (2019).  

 

3.2.2    Stopping condition 
In AK-MCS method, the stopping condition is defined from the perspective of individual responses (not the 

quantity of interest ), which may lead to some unnecessary extra evaluations of the mechanical model. A more 

relevant stopping condition that is based on the convergence of the quantity of interest (i.e. ) was proposed by 
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Schöbi et al. (2017). This criterion was used in this paper in the aim to reduce the computation time. Indeed, the 

adopted criterion relies on the convergence of the failure probability, which could be attained before reaching the 

stopping condition indicated by AK-MCS.  

Schöbi et al. (2017) define a limit state margin characterized by upper and lower boundaries of the limit 

state surface that takes into account the prediction uncertainty in the Kriging metamodel. These authors stated 

that when these boundaries become close to each other, a thin limit state margin is obtained and thus, the 

estimated failure probability can be considered as accurate. The proposed stopping criterion is given as follows:  

                                                                                                                       (4) 

where  is the original failure probability based on the Kriging prediction values  and,  and  

are respectively the upper and lower boundaries of the failure probability defined as follows: 

                                                                                                                            (5) 

                                                                                                                            (6) 

where  and  are respectively the upper and lower boundaries of the 

limit state surface defined by ,  is a constant (  in this paper) that sets the confidence level equal 

to 2 =  and  is a given tolerance taken as  in this paper. 

 

4 Probabilistic Numerical Results 

 

A reference case where the vertical autocorrelation distance was taken equal to 2m was considered, the soil 

being assumed to be homogeneous in the horizontal direction. The number of random variables required by 

EOLE to accurately discretize the random field with a small variance of error (<5%) was found equal to 20. This 

number of random variables was adopted in the present paper.  

Table 1. Results of AK-MCS and AK-MCSm approaches. 

 

Method  
Number of added 

samples 
Time (days) 

AK-MCS 1.274 447 27.89 

AK-MCSm (4 clusters) 1.274 520 7.28 

 

Table 1 presents the results of AK-MCS approach and those of the proposed AK-MCSm method. As may be 

seen from this table, the two approaches result in the same value of the failure probability. Concerning the 

computation cost, the proposed method leads to a significant reduction in the computation time as compared to 

AK-MCS (7.28 days for AK-MCSm instead of 27.89 days for AK-MCS). 

 

4.1    Effect of the autocorrelation distances ,  and  on  

Figure 2 presents the evolution of the failure probability with ,  and  where  and  are the horizontal 

autocorrelation distances in the directions orthogonal and parallel to the loading plane respectively and  is the 

vertical autocorrelation distance. The aim of this figure is to identify (for the present embedded length and 

diameter of the monopile) the values of the autocorrelation distances for which the soil spatial variability has a 

significant effect on the computed failure probability. 

For all the three curves of Figure 2, the failure probability increases with the different autocorrelation 

distances ,  or . The rates of increase of the failure probability largely decrease beyond given values of 

the autocorrelation distances [i.e. beyond an autocorrelation distance of 24m (»L) for , 10m (»2.5D) for  

and 6m (»1.5D) for  to attain a constant value of the failure probability corresponding to the case of a 

homogeneous soil (i.e. with no spatial variability). The failure probability corresponding to the homogeneous 

case was found equal to 0.12. It should be emphasized here that all the three identified distances (i.e., L, 2.5D 

and 1.5D) are directly related to the soil displacement field obtained due to the ultimate loading (i.e. they are 

related to the mechanics of the problem and not connected to the input probabilistic data). Indeed, the deformed 

soil at the ultimate limit state (i.e. at the ultimate rotation) is concentrated along the embedded length L of the 

monopile in the vertical direction, and it is limited to 2.5D and 1.5D in the y- and x- horizontal directions as it 

may be seen from Figures 3(a) and 3(b), respectively. These observations explain the reason why the increase in 

the autocorrelation distances ,  and  beyond the distances 1.5D, 2.5D and L respectively does not 

significantly change the value of the failure probability. A reduction in the failure probability with respect to the 

case of a homogeneous soil may be obtained if at least one of the autocorrelation distances ,  or  is 
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smaller than its corresponding limit value (i.e. 1.5D, 2.5D, L) since the monopile head rotation will be affected 

by the soil spatial variability in this case, thus inducing a change in the failure probability. 

 

Figure 2. Effect of the autocorrelation distances ,  and  on . 

 

 

Figure 3. Deformed soil at the ultimate limit state (a) in the yz plane (b) in the xy plane. 

Figure 2 shows that the rate of increase in the failure probability (for the small and moderate values of the 

autocorrelation distances) is the highest when considering the horizontal autocorrelation distance . This rate of 

increase in the failure probability is smaller for the horizontal autocorrelation length  and it becomes the 

smallest one for the vertical autocorrelation distance  These observations indicate that a significant reduction 

in the failure probability with respect to the one corresponding to the homogeneous case, may be obtained by 

first considering the spatial variability in the vertical direction; the spatial variability in the horizontal direction(s) 

although important could be considered in a second stage. This result is interesting especially that the 

identification of the soil spatial variability in the vertical direction is easier and cheaper (e.g. by using a CPT test).  

 

5 Conclusions 

 

A probabilistic analysis at the ultimate limit state (ULS) was performed in this paper for an offshore monopile 

foundation embedded in a spatially varying clayey soil. A Kriging-based probabilistic approach using a 

multipoint enrichment technique was adopted. An improved clustering technique proposed by Lelièvre et al. 

(2018) was used for learning. Also, this paper makes use of a relevant stopping condition recently proposed by 

Schöbi et al. (2017). The method was shown to be efficient in terms of the computation time with respect to AK-

MCS approach. A reduction in the failure probability with respect to the case of a homogeneous soil may be 

obtained if at least one of the autocorrelation distances ax, ay or az is smaller than its corresponding limit value 

(i.e. 1.5D, 2.5D, L). 
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