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Challenges

O Good understanding of the physical phenomena and their interactions

Q Development of an efficient and predictive multi-physics and multi-scale tool giving the
structural response according to the material local behavior




Interaction between moisture diffusion and mechanical behavior

Hygroscopic swelling

The moisture content leads to a so-called hygroscopic swelling involving relevant internal stresses
[Peret et al. 2014]
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Variability observed for moisture diffusion problem

Typical experimental data of glass/polyamide composite material —
Observations for glass/PA6-6 at HR= 80%
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Causes and different sources of uncertainties

Causes of the observed variability

@ Intrinsic variability of the material

@ Measurement error

@ Model error
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Causes and different sources of uncertainties

Causes of the observed variability

Input sources of uncertainties
@ Intrinsic variability of the material 9 Random material parameters
9@ Measurement error 9 Random loadings

9 Random geometries

@ Model error
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© Deterministic hygro-elastic problem and numerical resolution




Hygro-mechanical problem with crack

Objectives

9 Study the effect of crack on the moisture
diffusion

9 Study the effect of moisture on the crack
propagation

< Taking into account the various input
uncertainties

Why X-FEM modeling ?

o X-FEM methodology does not require
conforming mesh

9 X-FEM eases the crack propagation study

9 X-FEM allows studying geometrical
variability [Clément 2008]

o hygro-elastic problem



diffusion model

Heterogeneous Fick problem: strong form
Find c(x, t) € Q x Rf such that

dc(x, t)
ot

=DAc(x,t) in QxR}

c(x,t)=c> on T xR}

(DVxc(x,t))-n=0 on T\l xR}

c(x,t =0) = cp(x) Vx € Q

D, ifxe
0if x € Q

o the spatial average water content C(t) verifies

@ where Q = Q3 U, and D:{

C(t)zMi0 /ﬂp(x)c(x,t)dQ

o hygro-elastic problem



Heterogeneous gro-elastic problem: strong form

Find u(x,t) € Q x (0, T) such that
divo+f=0 onQ\lack X (0, T)
o=C: (ee(u)_eh(x’ t)) on Q\rcrack X (07 T)
o-n=0 onMN\lgack X (0,T)

U =ujy,, onl,x(0,T)

Ciifxe
here Q =Q; UQ dC=
o where 1UQs an {Cz ifx € O
Bhe(x, t) 0 0
o with ef(x, t) = ﬁgc(x, t) 0
sym BEc(x,t)

— field c(x, t) can be obtained from any diffusion model

o hygro-elastic problem



X-FEM methodology

eXtended Finite Element Method lies on two main aspects:

Q Implicit description of the geometry using the level-set technique [Sethian 1999]
Q Enriched approximation based on prior knowledge on the physical behavior [Moés et al. 1999]

Imposing Dirichlet BC with X-FEM for the diffusion problem

@ Since cracks are not represent with a conforming mesh, imposing Dirichlet BC is not
straightforward

o Use of the penalty approach [Fernandez et al. 2004] coupled to an enriched approximation
to circumvent this issue — modified discretized system

(K + vKP)c = +fP where KP :/r N;N;dl and fP :/r N; Cimpdl

crack crack

c(x) = Z N;(x)c; + Z Ni(x)H(x)c;" with H(x) the Heaviside function
i i

Resolution of the elastic problem with hygroscopic strain

@ Use of classical enrichment functions for the support and the tip of the crack
[Moés et al. 1999]

o hygro-elastic problem 10




a Stochastic modeling and associated numerical strategy




A diffusion problem

homogeneous Fick problem [Crank 1978]: strong form

— introduction of a finite dimensional probability space (Z, Bz, P=) to model the different
sources of uncertainties

Find c(x, t,€) : Q@ x R} x = — R such that

Sources of uncertainties modeled with a finite dc(x, t, &)
set of random variables &

ot

=D(&)Ac(x, t,€) in Q&) x Rf x

@ Random material parameters — D(&) c(x,t,€) =c™(€) on TixRl x

9 Random loadings — ¢ (&) (D(€)Vxe(x,t,€))-n=0 on [\l xR x

@ Random geometries — Q(&) and (&)

c(x,t=0,&) = co(x, &) Vx € Q(&) x




A diffusion problem

A homogeneous Fick problem [Crank 1978]: strong form

— introduction of a finite dimensional probability space (Z, Bz, P=) to model the different
sources of uncertainties

Find c(x, t,€) : Q@ x R} x = — R such that

T e adon e € R =p@actnng (0 xR 2
@ Random material parameters — D(&) c(x,t,€) =c>(§) on TixRfxZ

9 Random loadings — ¢™(£) (D(€)Vxc(x,t,€)) -n=0 on T\[gxRf x=
@ Random geometries — Q(&) and (&) c(x,t = 0,€) = colx, €) Vx € Q&) x =

The stochastic modeling requires two steps:

Q the quantification of the uncertainties (e.g. the identification of the input random variables)

Q the propagation of uncertainties through a physical model leading to the characterization of

the random response (e.g. probability density function of a quantity of interest, probability of
failure, etc.)




Spectral stochastic methods

Decomposition of the solution on a suited the stochastic problem:

The discrete solution ¢(y, &) will be searched under the form

P

c(y, &) = Z ca(y)Ha(£)

a=1

where the cq (y) are the unknown of the problem and the {Ho}P_; € L2(Z,dP;) is a basis of
orthonormal polynomials choosing with respect to the density of probability P= (Polynomial
Chaos [Ghanem et al. 1991, Xiu 2002])




Spectral stochastic methods
suited the stochastic problem:

Decomposition of the solution on a
The discrete solution ¢(y, &) will be searched under the form
P

cly, &)~ Z ca(y)Ha(&)

a=1

where the cq (y) are the unknown of the problem and the {Ho}F_, € L2(Z,dP¢) is a basis of
orthonormal polynomials choosing with respect to the density of probability P= (Polynomial

)

Chaos [Ghanem et al. 1991, Xiu 2002]

L? projection method [Le Maitre et al. 2010]
o Definition of approximation Example of quadrature with ng = 16
o = E(cHa) = [ Hal€)e(€)dPe i
9 Computation with numerical integration WN_: E ;
7_4 = '4’5_2 o Pj s Z‘A )

Ca ~ 34 wiHa (€ )e(€k)
where the (wg, &) are the integration points

— This technique only requires the resolution of ng deterministic computations which can be
made by a standard FEM software



©Q Numerical study of a composite at micro-scale

numerical study



Stochastic numerical study of a composite at micro-scale

Problem description

9 Random crack length L ., € U(5, 55) um (cov = 50%)
% Random imposed C> € U(1.6, 1.8) %H20 (cov = 4%)
9 Isotropic moisture diffusion tensor with
D =8.210"2um?/s
9 Volume fraction v¢ = 40 % with df = 10 um
9 Epoxy elastic parameters : Ey, = 4 GPa, vm = 0.36 et
8 =3.24%
< Glass elastic parameters : Ef = 72.5 GPa, v, = 0.22 et
B=0%

9 Vertical loading 022 = 1.5 MPa on the top edge

Approximation parameters

@ Spatial approximation with 14000 linear finite elements

¢ Euler’s implicit time scheme for T = 45 h with At = 10 min
o Penalty parameter v = 10°
9 Stochastic approximation based on polynomial chaos with order p = 3

® numerical study
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astic numerical study: diffusion results

Results on the global moisture content C(t)

WRandom ERIPEEn EREE Response surface at t =4 h
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Results on the local moisture content c(x, t)

c(x1, t) with x; close to the crack c(x2, t) with x> further from the crack
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— relevant influence of the crack length on both global and local moisture contents

ical study



Stochastic numerical study: diffusion results

Random realizations of moisture field c(x,t) at t = 0.5 h

15 15
4 1 1
’ 05 05
] ]
15
4
05
o

— fast post-processing of the complete stochastic solution

® numerical study



astic numerical study: mechanical results

Results on the vertical crack opening ugpen(

PDF at t; =35 h
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P(uopen(t1) > 1.5) = 4%
— significant variability mainly due to the crack length randomness

ical study



Stochastic numerical study: mechanical results

min

Results on the minimum local stress o7
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— significant variability mainly due to the crack length randomness but also to the maximum
absorption capacity randomness




Conclusions and future works

Conclusions

o Study of the impact of hygroscopic aging on damage composites in a stochastic context

@ Spectral stochastic approaches allow efficiently dealing with variability observed in
hygro-mechanical problems

o X-FEM framework allows dealing with random geometrical diffusion problems (crack and
others)

Ongoing and future works

o Dealing with the random crack propagation problem coupled with diffusion phenomenon

o Gathering experimental data for obtaining real input parameters and validating the numerical
approach

Thank you for your attention

e conclusions
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