

Numerical stochastic study of damaged composite materials in humid environment

Alexandre Clément, Sylvain Fréour, Frédéric Jacquemin

GeM University of Nantes / Ecole Centrale Nantes / CNRS UMR 6183

Work carried out within the framework of the WeAMEC, West Atlantic Marine Energy Community, and with funding from the CARENE and Pays de la Loire Region

Motivation

Model problem

Composite structures submitted to harsh environment

Tidal turbines

Offshore windmill

Complex coupled loadings

- Humidity
- Temperature
- Chemical aggressions
- Solar radiations
- Mechanical loadings

Motivation

Model problem

Composite structures submitted to harsh environment

Tidal turbines

Offshore windmill

Complex coupled loadings

- Humidity
- Temperature
- Chemical aggressions
- Solar radiations
- Mechanical loadings

Challenges

- Good understanding of the physical phenomena and their interactions
- Development of an efficient and predictive multi-physics and multi-scale tool giving the structural response according to the material local behavior

Interaction between moisture diffusion and mechanical behavior

Hygroscopic swelling

The moisture content leads to a so-called hygroscopic swelling involving relevant internal stresses [Peret et al. 2014]

Local stress field

Stress level distribution within the composite

Moisture uptake and material damage

Water uptake for various damage levels

Crack density vs ageing [Tual 2015]

Variability observed for moisture diffusion problem

Typical experimental data of glass/polyamide composite material ightarrow uncertainties

Observations for glass/PA6-6 at HR= 80%

Observations for glass/PA6-6 at HR= 10%

Variability observed for moisture diffusion problem

Typical experimental data of glass/polyamide composite material ightarrow uncertainties

Observations for glass/PA6-6 at HR= 80%

Observations for glass/PA6-6 at HR= 10%

Causes and different sources of uncertainties

Causes of the observed variability

- Intrinsic variability of the material
- Measurement error
- Model error

Variability observed for moisture diffusion problem

Typical experimental data of glass/polyamide composite material ightarrow uncertainties

Observations for glass/PA6-6 at HR= 80%

Observations for glass/PA6-6 at HR= 10%

Causes and different sources of uncertainties

Causes of the observed variability

- Intrinsic variability of the material
- Measurement error
- Model error

Input sources of uncertainties

- Random material parameters
- Random loadings
- Random geometries

Outline

- Motivation
- Deterministic hygro-elastic problem and numerical resolution
- 3 Stochastic modeling and associated numerical strategy
- Numerical study of a composite at micro-scale
- Conclusions and ongoing work

Outline

- Motivation
- Deterministic hygro-elastic problem and numerical resolution
- 3 Stochastic modeling and associated numerical strategy
- Numerical study of a composite at micro-scale
- Conclusions and ongoing work

Hygro-mechanical problem with crack

Objectives

- Study the effect of crack on the moisture diffusion
- Study the effect of moisture on the crack propagation
- Taking into account the various input uncertainties

Why X-FEM modeling?

- X-FEM methodology does not require conforming mesh
- X-FEM eases the crack propagation study
- X-FEM allows studying geometrical variability [Clément 2008]

Fick diffusion model

Heterogeneous Fick problem: strong form

Find $c(\mathbf{x},t) \in \Omega \times \mathbb{R}^+_*$ such that

$$rac{\partial c(\mathbf{x},t)}{\partial t} = \mathbf{D} \Delta c(\mathbf{x},t) \quad \text{ in } \quad \Omega imes \mathbb{R}^+_*$$

$$c(\mathbf{x},t) = c^{\infty} \quad \text{ on } \quad \Gamma_1 imes \mathbb{R}^+_*$$

$$(\mathsf{D} \nabla_x c(x,t)) \cdot \mathsf{n} = \mathsf{0}$$
 on $\Gamma \setminus \Gamma_1 \times \mathbb{R}^+_*$

$$c(\mathbf{x},t=0)=c_0(\mathbf{x}) \qquad \forall \mathbf{x} \in \Omega$$

- where $\Omega=\Omega_1\cup\Omega_2$ and $\mathbf{D}=egin{cases} \mathbf{D}_1 \ \text{if } \mathbf{x}\in\Omega_1 \\ \mathbf{0} \ \text{if } \mathbf{x}\in\Omega_2 \end{cases}$
- ullet the spatial average water content C(t) verifies

$$C(t) = \frac{1}{M_0} \int_{\Omega} \rho(\mathbf{x}) c(\mathbf{x}, t) d\Omega$$

Mechanical problem model

Heterogeneous uncoupled hygro-elastic problem: strong form

Find
$$oldsymbol{u}(\mathbf{x},t)\in\Omega imes(0,T)$$
 such that

$$\begin{aligned} \textit{div} \ \sigma + \textit{f} &= 0 \quad \text{on } \Omega \backslash \Gamma_{\textit{crack}} \times (0, T) \\ \sigma &= \textit{C} : (\varepsilon^{\textit{e}}(\textit{u}) - \varepsilon^{\textit{h}}(\textit{x}, t)) \quad \text{on } \Omega \backslash \Gamma_{\textit{crack}} \times (0, T) \\ \sigma \cdot \textit{n} &= \textit{0} \quad \text{on } \Gamma \backslash \Gamma_{\textit{crack}} \times (0, T) \\ \textit{u} &= \textit{u}_{\textit{imp}} \quad \text{on } \Gamma_{\textit{u}} \times (0, T) \end{aligned}$$

- where $\Omega=\Omega_1\cup\Omega_2$ and $extbf{ extit{C}}=egin{cases} extbf{ extit{C}}_1 ext{ if } extbf{ extit{x}}\in\Omega_1 \ extbf{ extit{C}}_2 ext{ if } extbf{ extit{x}}\in\Omega_2 \end{cases}$
- with $\epsilon^h(x,t) = \begin{bmatrix} \beta_x^h c(x,t) & 0 & 0 \\ & \beta_y^h c(x,t) & 0 \\ \text{sym} & & \beta_z^h c(x,t) \end{bmatrix}$

ightarrow field $c({m x},t)$ can be obtained from any diffusion model

X-FEM methodology

eXtended Finite Element Method lies on two main aspects:

- Implicit description of the geometry using the level-set technique [Sethian 1999]
- Enriched approximation based on prior knowledge on the physical behavior [Moës et al. 1999]

Imposing Dirichlet BC with X-FEM for the diffusion problem

- Since cracks are not represent with a conforming mesh, imposing Dirichlet BC is not straightforward
- Use of the penalty approach [Fernandez et al. 2004] coupled to an enriched approximation to circumvent this issue → modified discretized system

$$(\mathbf{K} + \gamma \mathbf{K}^p)\mathbf{c} = \gamma \mathbf{f}^p$$
 where $\mathbf{K}^p = \int_{\Gamma_{crack}} N_i N_j d\Gamma$ and $\mathbf{f}^p = \int_{\Gamma_{crack}} N_i C_{imp} d\Gamma$

$$c(\mathbf{x}) = \sum_i N_i(\mathbf{x}) c_i + \sum_i N_i(\mathbf{x}) H(\mathbf{x}) c_i^+ \qquad \text{with } H(\mathbf{x}) \text{ the Heaviside function}$$

Resolution of the elastic problem with hygroscopic strain

 Use of classical enrichment functions for the support and the tip of the crack [Moës et al. 1999]

Outline

- Motivation
- Deterministic hygro-elastic problem and numerical resolution
- Stochastic modeling and associated numerical strategy
- Numerical study of a composite at micro-scale
- Conclusions and ongoing work

A stochastic diffusion problem

A stochastic homogeneous Fick problem [Crank 1978]: strong form

 \rightarrow introduction of a finite dimensional probability space $(\Xi, \mathcal{B}_{\Xi}, P_{\Xi})$ to model the different sources of uncertainties

Sources of uncertainties modeled with a finite set of random variables $\boldsymbol{\mathcal{E}}$

- Random material parameters $\rightarrow D(\xi)$
- Random loadings $\rightarrow c^{\infty}(\xi)$
- Random geometries $\rightarrow \Omega(\xi)$ and $\Gamma(\xi)$

Find $c(\pmb{x},\pmb{t},\pmb{\xi}):\Omega imes\mathbb{R}^+_* imes \Xi o\mathbb{R}$ such that

$$\frac{\partial c(\mathbf{x},t,\boldsymbol{\xi})}{\partial t} = \frac{\mathsf{D}(\boldsymbol{\xi})\Delta c(\mathbf{x},t,\boldsymbol{\xi})}{\partial t} \quad \text{ in } \quad \Omega(\boldsymbol{\xi}) \times \mathbb{R}^+_* \times \boldsymbol{\Xi}$$

$$c(\mathbf{x},t,\boldsymbol{\xi})=c^{\infty}(\boldsymbol{\xi}) \quad \text{on} \quad \Gamma_{\mathbf{1}} \times \mathbb{R}^{+}_{*} \times \boldsymbol{\Xi}$$

$$(\mathsf{D}(\boldsymbol{\xi})
abla_{\mathsf{X}} c(x,t,\boldsymbol{\xi})) \cdot \mathsf{n} = \mathsf{0}$$
 on $\Gamma \backslash \Gamma_{\mathsf{1}} \times \mathbb{R}^{+}_{*} \times \Xi$ $c(x,t=0,\boldsymbol{\xi}) = c_{\mathsf{0}}(x,\boldsymbol{\xi})$ $\forall x \in \Omega(\boldsymbol{\xi}) \times \Xi$

A stochastic diffusion problem

A stochastic homogeneous Fick problem [Crank 1978]: strong form

 \rightarrow introduction of a finite dimensional probability space $(\Xi, \mathcal{B}_{\Xi}, P_{\Xi})$ to model the different sources of uncertainties

Find
$$c(x,t,\pmb{\xi}):\Omega\times\mathbb{R}^+_*\times\Xi\to\mathbb{R}$$
 such that

Sources of uncertainties modeled with a finite set of random variables €

- Random material parameters $\rightarrow D(\xi)$
- Random loadings $\rightarrow c^{\infty}(\xi)$
- Random geometries $\rightarrow \Omega(\xi)$ and $\Gamma(\xi)$

$$\frac{\partial c(\mathbf{x}, t, \boldsymbol{\xi})}{\partial t} = \mathbf{D}(\boldsymbol{\xi}) \Delta c(\mathbf{x}, t, \boldsymbol{\xi}) \quad \text{in} \quad \Omega(\boldsymbol{\xi}) \times \mathbb{R}_*^+ \times \boldsymbol{\Xi}$$

$$c(\mathbf{x},t,oldsymbol{\xi})=c^{\infty}(oldsymbol{\xi}) \qquad ext{on} \quad \Gamma_{\mathbf{1}} imes\mathbb{R}^{+}_{*} imes\mathbf{\Xi}$$

$$({\color{red} \textbf{D}}({\color{blue} \boldsymbol{\xi}}) \nabla_{\hspace{-1pt} \boldsymbol{x}} \, c(\boldsymbol{x}, t, {\color{blue} \boldsymbol{\xi}})) \cdot \boldsymbol{n} = \boldsymbol{0} \quad \text{ on } \quad \Gamma \backslash \Gamma_{1} \times \mathbb{R}^{+}_{*} \times \boldsymbol{\Xi}$$

$$c(x, t = 0, \xi) = c_0(x, \xi)$$
 $\forall x \in \Omega(\xi) \times \Xi$

The stochastic modeling requires two steps:

- lacktriangle the quantification of the uncertainties (e.g. the identification of the input random variables)
- the propagation of uncertainties through a physical model leading to the characterization of the random response (e.g. probability density function of a quantity of interest, probability of failure, etc.)

Spectral stochastic methods

Decomposition of the solution on a specific basis suited the stochastic problem:

The discrete solution $c(y,\xi)$ will be searched under the form

$$c(\mathbf{y}, \boldsymbol{\xi}) \approx \sum_{\alpha=1}^{P} c_{\alpha}(\mathbf{y}) H_{\alpha}(\boldsymbol{\xi})$$

where the $c_{\alpha}(\mathbf{y})$ are the unknown of the problem and the $\{H_{\alpha}\}_{\alpha=1}^{P} \in L^{2}(\Xi, dP_{\xi})$ is a basis of orthonormal polynomials choosing with respect to the density of probability P_{Ξ} (Polynomial Chaos [Ghanem et al. 1991, Xiu 2002])

Spectral stochastic methods

Decomposition of the solution on a specific basis suited the stochastic problem:

The discrete solution $c(y, \xi)$ will be searched under the form

$$c(\mathbf{y}, \boldsymbol{\xi}) \approx \sum_{\alpha=1}^{P} c_{\alpha}(\mathbf{y}) H_{\alpha}(\boldsymbol{\xi})$$

where the $c_{\alpha}(\mathbf{y})$ are the unknown of the problem and the $\{H_{\alpha}\}_{\alpha=1}^{P} \in L^{2}(\Xi, dP_{\xi})$ is a basis of orthonormal polynomials choosing with respect to the density of probability P_{Ξ} (Polynomial Chaos [Ghanem et al. 1991, Xiu 2002])

L^2 projection method [Le Maître et al. 2010]

Definition of approximation

$$\mathbf{c}_{\alpha} = E(\mathbf{c}H_{\alpha}) = \int_{\mathbf{\Theta}} H_{\alpha}(\boldsymbol{\xi})\mathbf{c}(\boldsymbol{\xi})dP_{\boldsymbol{\xi}}$$

Computation with numerical integration

$$\mathbf{c}_{\alpha} \approx \sum_{k=1}^{n_{\mathbf{g}}} \omega_k H_{\alpha}(\boldsymbol{\xi}_k) \mathbf{c}(\boldsymbol{\xi}_k)$$

where the $(\omega_k, oldsymbol{\xi}_k)$ are the integration points

ightarrow This technique only requires the resolution of n_g deterministic computations which can be made by a standard FEM software

Example of quadrature with $n_g = 16$

Outline

- Motivation
- Deterministic hygro-elastic problem and numerical resolution
- Stochastic modeling and associated numerical strategy
- Numerical study of a composite at micro-scale
- Conclusions and ongoing work

Stochastic numerical study of a composite at micro-scale

Problem description

- Random crack length $L_{crack} \in U(5, 55) \, \mu m (cov = 50\%)$
- ullet Random imposed ${\it C}^{\infty} \in {\it U}(1.6,\ 1.8)\ \%{\it H}$ 20 (${\it cov}=4\%$)
- Isotropic moisture diffusion tensor with $D=8.2\,10^{-2}\mu m^2/s$
- ullet Volume fraction $v_f=40$ % with $d_f=10~\mu m$
- Epoxy elastic parameters : $E_m=4$ GPa, $\nu_m=0.36$ et $\beta=3.24\,\%$
- Glass elastic parameters : $E_f=72.5$ GPa, $\nu_m=0.22$ et $\beta=0~\%$
- ullet Vertical loading $\sigma_{22}=1.5$ MPa on the top edge

Approximation parameters

- Spatial approximation with 14000 linear finite elements
- ullet Euler's implicit time scheme for T=45~h with $\Delta t=10~min$
- ullet Penalty parameter $\gamma=10^6$
- Stochastic approximation based on polynomial chaos with order p=3

Stochastic numerical study of a composite at micro-scale

Problem description

- Random crack length $L_{crack} \in U(5, 55) \mu m (cov = 50\%)$
- ullet Random imposed ${\it C}^{\infty} \in {\it U}(1.6,\ 1.8)\ \%{\it H}$ 20 (${\it cov}=4\%$)
- Isotropic moisture diffusion tensor with $D=8.2\,10^{-2}\mu m^2/s$
- ullet Volume fraction $v_f=40$ % with $d_f=10~\mu m$
- Epoxy elastic parameters : $E_m=4$ GPa, $\nu_m=0.36$ et $\beta=3.24\,\%$
- Glass elastic parameters : $E_f =$ 72.5 $GPa,~\nu_m =$ 0.22 et $\beta =$ 0 %
- ullet Vertical loading $\sigma_{22}=1.5$ MPa on the top edge

Approximation parameters

- Spatial approximation with 14000 linear finite elements
- ullet Euler's implicit time scheme for T=45~h with $\Delta t=10~min$
- ullet Penalty parameter $\gamma=10^6$
- Stochastic approximation based on polynomial chaos with order p=3

Stochastic numerical study: diffusion results

Results on the global moisture content C(t)

Results on the local moisture content $c(\mathbf{x}, t)$

ightarrow relevant influence of the crack length on both global and local moisture contents

Stochastic numerical study: diffusion results

Random realizations of moisture field $c(\mathbf{x},t)$ at t=0.5~h

→ fast post-processing of the complete stochastic solution

Stochastic numerical study: mechanical results

Results on the vertical crack opening $u_{open}(t)$

→ significant variability mainly due to the crack length randomness

 $P(u_{open}(t_1) > 1.5) = 4\%$

Stochastic numerical study: mechanical results

Results on the minimum local stress $\sigma_{11}^{min}(t)$

 $P(\sigma_{11}^{min}(t_1) \leqslant -37) = 4.7\%$

 \rightarrow significant variability mainly due to the crack length randomness but also to the maximum absorption capacity randomness

Conclusions and future works

Conclusions

- Study of the impact of hygroscopic aging on damage composites in a stochastic context
- Spectral stochastic approaches allow efficiently dealing with variability observed in hygro-mechanical problems
- X-FEM framework allows dealing with random geometrical diffusion problems (crack and others)

Ongoing and future works

- Dealing with the random crack propagation problem coupled with diffusion phenomenon
- Gathering experimental data for obtaining real input parameters and validating the numerical approach

Thank you for your attention

Selective bibliography I

T. Peret, A. Clement, S. Freour and F. Jacquemin.

Numerical transient hygro-elastic analyses of reinforced Fickian and non-Fickian polymers. Composite Structures, doi:10.1016/j.compstruct.2014.05.026, 2014.

J. Crank.

The mathematics of diffusion.

Journal of Composite Materials, 12, 118-131, 1978.

📄 N. Tual.

Durability of carbon/epoxy composites for tidal turbine blade applications.

Thèse de doctorat, Université de Bretagne Occidentale, 2015.

A. Clément

Elements finis stochastiques étendus pour le calcul de structures à géométrie aléatoire.

Thèse de doctorat, Université de Nnates, 2008.

J.A. Sethian.

Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.

Cambridge University Press, Cambridge, UK, 1999.

N. Moës, J. Dolbow, and T. Belytschko.

A finite element method for crack growth without remeshing.

Int. J. for Numerical Methods in Engineering, 46:131-150, 1999.

Selective bibliography II

S. Fernandez-Mendez and A. Huerta. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 193, 1257-1275, 2004.

R. Ghanem and P. Spanos.

Stochastic finite elements: a spectral approach.

Springer, Berlin, 1991.

D. B. Xiu et G. E. Karniadakis.
The Wiener-Askey polynomial chaos for stochastic differential equations.
SIAM J. Sci. Comput., 24(2):619–644, 2002.

O. P. Le Maître and O. M. Knio.

Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics.

Springer, Heidelberg 2010.