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Overview – On the study of hygromechanical coupling

I. Experimental procedure

II. Uncoupled approach

1) Diffusive and hygro-elastic behaviour

2) Quasi-static uncoupled test

III. Hygromechanical coupling

1) Design of specific coupled creep test 

2) Simulation of coupled creep test with a water content field

IV. Conclusions & ongoing work
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• Coupled creep test
 Humid air / immersion
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𝐶 𝑡 =
𝑚 𝑡 −𝑚0
𝑚0

C(t) : global water content
m(t) : mass at t time
m0 : initial mass

● Evaluation of the diffusive behaviour of resin and composite samples through gravimetric
tests
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● Experimental test : Measurement of the longitudinal strain in 
accordance with the global water uptake content. 

● Predict internal stresses due to water absorption.
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• Immersion 60˚C
• Immersion 25˚C
• Humid air 40˚C & 85% RH 25°C 60°C 40°C / 85%HR

βh (avg) % 0,20 0,24 0,22

 Same swelling behaviour regardless
the hygro-thermometric condition

 Temperature only accelerates the
diffusion phenomenon and thus the
hygroscopic swelling

 Linear identification for βh

Hygroscopic swelling coefficient βh (neat resin)

Laser swelling measurement device
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Hygroscopic swelling

εh= βh . c(x,t)  
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Uncoupled test: ex-situ test at different ageing states
Coupled test: in-situ test during ageing
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 Evolution of mechanical properties versus 
global/local water content

 Analysis of the sensitivity of the different
stacking sequences towards humid ageing
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Objectives: perform numerical and experimental tests that take into account the diffusive and 
mechanical behaviour at the same time 
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Identification of diffusive 
properties

• Gravimetric test     
• Hygroscopic swelling
• DVS

• Tensile test
• Creep test
• DMA

Identification of mechanical
properties at different states 

of ageing
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D, βh, C∞ E(c(t,x)), gi, τi
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Coupled test



x : T0

x : Ta

Water diffusion & hygroscopic swelling associated without mechanical loading

Water field
content

Strain field
(E11 = εx)

x : T0

x : Ta
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Physical parameter inputs
Diffusion
• D = 5.07E-13 m²/s
• C_inf = 4.95 % (BC)
• Ta = 115 days

Elasticity
• E: 3,39 GPa
• ν: 0.35
• βh = 0.2% 

LY556 resin
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Diffusive behaviour and mechanical states

 Numerical simulation based on a Fick law for the diffusive behaviour
 Mechanical states obtained with an uncoupled elastic model
 Simulation performed with Abaqus©
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Physical parameter inputs

Elasticity
• E: 3.39 GPa
• ν: 0.35
• βh = 0.2% 

Viscoelasticity
g1 = 0.001 τ1=100
g2 = 0.08 τ2=500
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Viscoelastic behaviour

 Add of viscoelastic constitutive equations with generalized Maxwell model through Prony series, 
identified with experimental creep data 

𝑔𝑅 𝑡 = 1 − 

𝑖=1

𝑁

𝑔𝑖
𝑃(1 − 𝑒−𝑡/τ𝑖)

Viscoelastic model
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Creep test
• 3 steps (1h creep / 3h relaxation)
• 5 / 7.5 / 10 MPa
• Elastic domain = no plasticity

Discussion

• Uniform strain field
• Good accordance with creep data
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Physical parameter inputs
Diffusion
• D = 5E-13 m²/s
• C_inf = 4.95 %
• Ta = 115 days

Elasticity
• E: 3.39 GPa
• ν: 0.35
• βh = 0.2% 

Viscoelasticity
g1 = 0.001 τ1=100
g2 = 0.08 τ2=500

Creep test associated with water diffusion (at Ta for diffusion and Ta + Tb for creep test)
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Hygro-viscoelastic behaviour

 Creep simulation with hygroscopic strain due to water uptake

1) Strain induced by water diffusion only
2) Homogeneous strain field for creep only
3) Strain field resulting from creep + water diffusion
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 Objective: perform creep tests in humid environment (immersion/humid air) during a long period
of time (> week) so that diffusion can affect the overall mechanical behaviour.

 Manufacturing of specific samples called « loop » - Meier et al.(2001)

 Advantages:
o Avoid slipping in grips
o Easy to remove from creep bench

 Process: CFRP Prepreg [+/-45]3

Manufacturing process of loop samples

Experimental
procedure
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Hygromechanical
coupling

Conclusion & 
perspectives
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Load sensor

Displacement
sensor

Loop sample

Extensometer +  
strain gauge

Design brief

 Follow the strain evolution during a creep test in humid
condition

 Possibility of testing up to 5 samples with different loads at the 
same time
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Following in situ creep test… 



13

Experimental
procedure

Uncoupled
approach

Hygromechanical
coupling

Conclusion & 
perspectives

Ongoing work
Experimental
o Perform uncoupled tests at further ageing states
o Carry out coupled creep test (right now)

Modelling and simulation
o Introducing a dependency to ageing for elastic and viscoelastic properties

Conclusion
Experimental
o An experimental procedure to study hygromechanical coupling has been set up.
o Uncoupled test have been realized and showed evolution of some properties after less than 6 

months

Modelling and simulation
o A viscoelastic Maxwell model combined with hygro-elastic properties was used to simulate a creep

test in hygro-elasticity
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