

Study of the hygro-mechanical coupling in composite materials

ICCS23 - 23rd International Conference on Composite Structures

2nd September 2020

Q. Dezulier⁽¹⁾, F. Jacquemin⁽¹⁾, P. Davies⁽²⁾, A. Clement⁽¹⁾, M. Arhant⁽²⁾, B. Flageul⁽²⁾

(1): Research Institute in Civil and Mechanical Engineering, CNRS UMR 6183, University of Nantes (2): Marine Structures Laboratory, IFREMER Centre Bretagne

This work was carried out within the framework of the WEAMEC, West Atlantic Marine Energy Community, and with funding from the CARENE

Composite materials in marine environment

- Good resistance to marine corrosion
- Lightening of marine structures
- Saving energy (fuel/electricity)

Various mechanical loadings Creep or fatigue

Durability ? Lifetime > 25 years

Gem

Composite materials in marine environment

Overview – On the study of hygromechanical coupling

I. Experimental procedure

II. Uncoupled approach

- 1) Diffusive and hygro-elastic behaviour
- 2) Quasi-static uncoupled test

III. Hygromechanical coupling

1) Design of specific coupled creep test

Gest

2) Simulation of coupled creep test with a water content field

IV. Conclusions & ongoing work

CENTRALE NANTES

WEAMEC

Gem

Gravimetric tests

Evaluation of the diffusive behaviour of resin and composite samples through gravimetric tests

Hygroscopic swelling

- **Experimental test** : Measurement of the longitudinal strain in accordance with the global water uptake content.
- Predict **internal stresses** due to water absorption.

Laser swelling measurement device

 $\varepsilon_h = \boldsymbol{\beta}_h \cdot c(x,t)$

 β_h (avg) %

0,20

0,24

0,22

the

Objectives: perform **numerical** and **experimental** tests that take into account the **diffusive** and **mechanical** behaviour at the same time

Gem

Objectives: perform **numerical** and **experimental** tests that take account of the **diffusive** and **mechanical** behaviour at the same time

Diffusive behaviour and mechanical states

- > Numerical simulation based on a Fick law for the diffusive behaviour
- Mechanical states obtained with an uncoupled elastic model
- Simulation performed with Abaqus©

GeM

Viscoelastic behaviour

Add of viscoelastic constitutive equations with generalized Maxwell model through Prony series, identified with experimental creep data

Hygro-viscoelastic behaviour

Creep simulation with hygroscopic strain due to water uptake

50e-03

- Objective: perform creep tests in humid environment (immersion/humid air) during a long period of time (> week) so that diffusion can affect the overall mechanical behaviour.
- Manufacturing of specific samples called « **loop** » Meier et al.(2001)

Manufacturing process of loop samples

- > Advantages:
 - Avoid slipping in grips
 - Easy to remove from creep bench
- Process: CFRP Prepreg [+/-45]₃

Acknowledgments to Prof. P. Casari

300

250

200

150

100

50

0 + 0

Stress (MPa)

5 3P B

L45 3P C

10

11

Tensile test on loop (3 plies)

Strain (%)

Experimental procedure

UNIVERSITÉ DE NANTES

Design brief

- Follow the strain evolution during a creep test in humid condition
- Possibility of testing up to 5 samples with different loads at the same time

Creep test (air) for 41h, 1500N on loop sample [+/-45]₃

Following in situ creep test...

12

Conclusion

Experimental

- An experimental procedure to study **hygromechanical coupling** has been set up.
- Uncoupled test have been realized and showed evolution of some properties after less than 6 months

Modelling and simulation

 A viscoelastic Maxwell model combined with hygro-elastic properties was used to simulate a creep test in hygro-elasticity

Ongoing work

Experimental

- Perform uncoupled tests at **further ageing states**
- Carry out coupled creep test (right now)

Modelling and simulation

o Introducing a **dependency to ageing** for elastic and viscoelastic properties

This work was carried out within the framework of the WEAMEC, West Atlantic Marine Energy Community, and with funding from the CARENE

