General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References

Wind Tunnel Study of a "Floating" Wind Turbine's Wake in an Atmospheric Boundary Layer with Imposed Characteristic Surge Motion

Benyamin Schliffke, Sandrine Aubrun, Boris Conan

May 25, 2021

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
•					

The Floateole Project

Figure: FLOATGEN, the prototype floating offshore wind turbine, used as a reference in this project. Source: https://sem-rev. ec-nantes.fr/medias/photo/sem-rev-bj-132-bd_ 1539862739781-jpg?ID_FICHE=196422 Accessed: 2020-09-21

- Duration of the project: 2017-2021
- Funding: Pays de la Loire, Centrale Nantes
- PhD thesis partly funded by ADEME
- Work includes wind tunnel experiments (PhD) and field measurements (LIDAR, Post-Doc)
- Comparison of measurements, when both data sets are available
- Industrial partners: D-ICE Engineering, IDEOL

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
	•				
Main Questio	ns				

How does imposed surge motion affect the wake?

 \rightarrow How is the spatial evolution of the wake affected?

 \rightarrow Are physical processes modified by imposing surge motion?

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
		00000			

Boundary Layer & Scaling

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
		00000	000000000	000	

Experimental Set-up

- Geometric scaling: 1 : 500
- Velocity scaling: 1 : 2.5
- Frequency scaling: 200
- Characteristic A: A = 0.125 D or 10 m full-scale
- Characteristic f_{red} : $f_{red} = 0.1$ or 0.01 Hz full-scale
 - \rightarrow Motion derived from numerical simulation

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
		000000			

Experimental Set-up

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
		000000			

Modelled Boundary Layer

Profiles indicate that the flow is representative of a maritime boundary layer according to VDI (2000).

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
		000000			

Modelled Boundary Layer

Table: Adaptation from VDI Guideline 3783. z_0 is the roughness length, α the exponent coefficient and L_u^{χ} the integral length scale. Added values for the modelled boundary layer.

Roughness class	Target values	Modelled
Type of terrain	ice, snow, water surface	water surface
z ₀ [<i>m</i>]	10^{-5} to $5 imes 10^{-3}$	5.5 $ imes$ 10 ⁻⁶
α	0.08 to 0.12	0.11
L _u ^x [m]	200 to 250	200

- Profiles and values show: flow is representative of a maritime boundary layer $\sqrt{}$
- Spectra also correspond to atmospheric boundary layer reference data \checkmark

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
		000000			

Previous work

$$f_{red} = rac{f \cdot D}{U_{ref}}$$

- Modifications of U and TKE in the wake through imposed motion
- Peaks in spectrum at imposed motion frequencies
- Figures from Schliffke et al. (2020)

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			•••••		

PIV Measurements

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			000000000		

PIV - Velocity

- From top to bottom: $f_{red} = 0$, $f_{red} = 0.05$, $f_{red} = 0.1$, $f_{red} = 0.15$
- From left to right: distance from model from 2.3 *D* to 7.9 *D*
- Motion below f_{red} <= 0.1 has little effect on the mean flow</p>
- f_{red} = 0.15 leads to of faster recovery of the mean flow

General Information O	Main Questions O	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
PIV - TKE					

- From top to bottom: $f_{red} = 0$, $f_{red} = 0.05$, $f_{red} = 0.1$, $f_{red} = 0.15$
- From left to right: distance from model from 2.3 D to 7.9 D
- Motion reduces TKE, but not systematically

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			000000000		

PIV - TKE budget - Introduction

- 0 = Advection Production Transport
 - Pressure Transport Viscous Transport
 - Dissipation

- Method following approach described in Blackman et al. (2017)
- Advection:
- Production:
- Transport:
- Pressure transport:
- Viscous transport: ×
- **Dissipation**: √ (using LE-PIV method proposed by Sheng et al. (2000))
- Reminder:

$$\mathit{TKE} = 0.5 \cdot \left(\sigma_u^2 + \sigma_v^2 + \sigma_w^2
ight)$$

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			000000000		

PIV - TKE budget - Fixed Turbine

- Production and advection are strongest gain of TKE around top tip
- Turbulent transport is a sink below 0.75 and then a gain, decreasing magnitude downstream
- Dissipation plays an increasingly important role with increasing distance
- Pressure transport/residual largest sink
- x/D > 3.5: all terms behave similarly \rightarrow not shown in the following

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			000000000		

PIV - TKE budget - Advection

Motion reduces amplitude of TKE advection

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			0000000000		

PIV - TKE budget - Transport

Motion reduces amplitude of TKE advection

Imposed surge motion has little effect on transport

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			0000000000		

PIV - TKE budget - Production

- Motion reduces amplitude of TKE advection
- Imposed surge motion has little effect on transport
- Imposed surge motion increases production above top tip

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			0000000000		

PIV - TKE budget - Dissipation

- Motion reduces amplitude of TKE advection
- Imposed surge motion has little effect on transport
- Imposed surge motion increases production above top tip
- Imposed surge motion increases dissipation systematically

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
			000000000		

PIV - TKE budget - Residual

- Motion reduces amplitude of TKE advection
- Imposed surge motion has little effect on transport
- Imposed surge motion increases production above top tip
- Imposed surge motion increases dissipation systematically above top tip
- Residual/pressure transport decreases with motion

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
				•00	

Conclusions

General Information	Main Questions O	Boundary Layer & Scaling	PIV Measurements	Conclusions O●O	References
Conclusions					

ightarrow How is the spatial evolution of the wake affected?

- **Velocity:** $f_{red} <= 0.1$: little effect on the mean flow; $f_{red} = 0.15$: perceived faster recovery
- **TKE:** *TKE* reduced overall
- \blacksquare \rightarrow First analysis seems to confirm observations in Schliffke et al. (2020)

ightarrow Are physical processes modified by imposing surge motion?

- Dissipation and production of *TKE* are increased with motion at x/D = 3.5
- The residual *TKE* budget equation is reduced with motion at x/D = 3.5
- → Increased dissipation could explain the observed reduction in *TKE* with higher f_{red} , as the motion introduces higher frequencies into the wake that may expedite the transport of energy down the energy cascade. How does increased production fit in here?

General Information	Main Questions	Boundary Layer & Scaling	PIV Measurements	Conclusions	References
				000	

This work was carried out within the framework of the WEAMEC, West Atlantic Marine Energy Community, and with funding from the Pays de la Loire Region and Europe (European Regional Development Fund).

General Information O	Main Questions O	Boundary Layer & Scaling	PIV Measurements	Conclusions 000	References
References					

- Blackman, K., Perret, L., Calmet, I., and Rivet, C. (2017). Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using piv. *Physics of Fluids*, 29(8):085113.
- Schliffke, B., Aubrun, S., and Conan, B. (2020). Wind tunnel study of a "floating" wind turbine's wake in an atmospheric boundary layer with imposed characteristic surge motion. *Journal of Physics: Conference Series*, 1618:062015.
- Sheng, J., Meng, H., and Fox, R. (2000). A large eddy piv method for turbulence dissipation rate estimation. *Chemical engineering science*, 55(20):4423–4434.
- VDI (2000). Umweltmeteorologie Physikalische Modellierung von Strömungs- und Ausbreitungsvorgängen in der atmosphärischen Grenzschicht - Windkanalanwendungen. Technical report, VDI Verein Deutscher Ingenieure e.V., VDI-Platz 1, 40468 Düsseldorf, Germany.