Description du poste

Le dimensionnement des ombilicaux repose sur le calcul de leur réponse en service. Il s’agit de déterminer leur réponse temporelle à différents états de mer. Pour ce faire, des logiciels métiers (tels que Deeplines, Orcaflex, etc.) sont utilisés, dans lesquels l’ombilical est décrit à l’aide d’un modèle poutre, et soumis à des efforts hydrodynamiques et aux mouvements du flotteur qui supporte l’éolienne. Il importe donc, d’une part d’alimenter ce modèle poutre par les caractéristiques de raideur de l’ombilical, mais aussi à partir des résultats obtenus sur ce modèle, de calculer les contraintes locales dans l’ombilical. Ces dernières seront ensuite exploitées dans une analyse en fatigue.

La détermination du comportement global de l’ombilical peut se faire grâce à des essais mécaniques ou à partir de modèles analytiques ou numériques, cf. par exemple [1-4]. Dans ce dernier cas, une méthode multi-échelle est utilisée, pour réduire la taille du domaine à étudier. En l’occurrence, il s’agit de l’homogénéisation périodique, qui permet de tenir compte de la géométrie hélicoïdale des constituants de l’ombilical et de réduire la taille du domaine d’étude à une période axiale. Cette approche repose donc sur un modèle éléments finis 3D détaillé d’un tronçon de l’ombilical, cf. Figure 1, et des travaux dans ce domaine ont déjà été réalisés dans une thèse récemment soutenue au GeM [5]. Il apparaît que le comportement global de l’ombilical est complexe, en particulier, il est non-linéaire en flexion, cf. Figure 2, du fait des interactions de contact entre les constituants de l’ombilical.

La prise en compte de ce comportement dans les modèles poutres des logiciels métier n’est pas évidente. Certes ces logiciels proposent des modèles non-linéaires des ombilicaux, mais selon des lois prédéfinies. L’utilisation de ces modèles conduit ainsi à des approximations par rapport au comportement réel, notamment pour la prise en compte du couplage entre le comportement en flexion et en traction. A contrario, une approche précise basée sur un couplage fort entre le modèle poutre du logiciel métier et le modèle 3D détaillé, à chaque étape du calcul et en tout point d’intégration de la poutre, conduirait à des temps de calculs prohibitifs.

Figure 1. Modèle éléments finis 3D d’un tronçon de l’ombilical. Vue d’ensemble et vue détaillée, d’après [5]

Figure 2 : Comportement non-linéaire en flexion

Il est donc nécessaire de pouvoir évaluer le niveau d’approximation des modèles non-linéaires existants, et d’étudier comment les améliorer à moindre coût, sans recourir au couplage fort précédemment mentionné. Dans ce contexte, des approches proposées récemment et fondées sur des bases de données peuvent être envisagées [6]. Le principe consiste dans un premier temps à générer une base de données faiblement discrétisée du comportement non-linéaire de l’ombilical, qui sera enrichie de façon non uniforme si la discrétisation précédente est insuffisante. Une difficulté importante à prendre en compte est la dépendance du comportement à l’histoire du chargement, qui complique l’utilisation des approches data-driven.

Ainsi, le développement d’une approche multi-échelle non-linéaire précise mais plus performante que le couplage fort entre le modèle poutre et le modèle 3D constitue le principal objectif de la thèse.

Au delà de cet objectif, il convient en parallèle de disposer d’une caractérisation mécanique expérimentale de l’ombilical à laquelle les modèles pourront être confrontés. Ces expériences seront menées en laboratoire, sur le banc de flexion de l’IFREMER.

D’autre part, des mesures en mer sont aussi envisagées, pour évaluer la précision du modèle d’ensemble de l’ombilical.

Modalités de candidature

Encadrement : P. Cartraud, L. Stainier
patrice.cartraud@ec-nantes.fr ; laurent.stainier@ec-nantes.fr